
File Systems

Parallel Storage Systems
2023-05-08

Jun.-Prof. Dr. Michael Kuhn
michael.kuhn@ovgu.de

Parallel Computing and I/O
Institute for Intelligent Cooperating Systems
Faculty of Computer Science
Otto von Guericke University Magdeburg
https://parcio.ovgu.de

mailto:michael.kuhn@ovgu.de
https://parcio.ovgu.de


Outline

File Systems

Review

Introduction

Structure

Example: ext4

Alternatives

Summary



Storage Devices Review

• Which hard-disk drive parameter is increasing at the slowest rate?
1. Capacity
2. Throughput
3. Latency
4. Density
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Storage Devices Review

• Which RAID level does not provide redundancy?
1. RAID 0
2. RAID 1
3. RAID 5
4. RAID 6
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Storage Devices Review

• Which problem is called write hole?
1. Inconsistency due to non-atomic data/parity update
2. Incorrect parity calculation
3. Storage device failure during reconstruction
4. Partial stripe update
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Motivation Introduction

1. File systems provide structure
• File systems typically use a hierarchical organization
• Hierarchy is built from files and directories
• Access is handled via file and directory names
• Other approaches: Tagging, queries etc.

2. File systems manage data and metadata
• They are responsible for block allocation and management
• Metadata includes access permissions, time stamps etc.
• File systems use underlying storage devices
• Devices can also be provided by storage arrays such as RAID
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Examples Introduction

• Linux: tmpfs, ext4, XFS, btrfs, ZFS
• File systems (more or less) conform to POSIX

• Windows: FAT, exFAT, NTFS

• OS X: HFS+, APFS

• Universal: ISO9660, UDF
• Can be used on arbitrary media, mostly used on optical ones

• Pseudo: sysfs, proc
• Allow changing system settings etc.
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Examples. . . Introduction

• Network: NFS, AFS, Samba
• Usually provide access to an underlying file system via the network

• Cryptographic: EncFS, eCryptfs
• Typically make use of an underlying file system

• Parallel distributed: Spectrum Scale, Lustre, OrangeFS, CephFS, GlusterFS
• Distribute data across multiple servers
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I/O Interfaces Introduction

• I/O operations are realized using I/O interfaces
• Interfaces are available for different abstraction levels
• Interfaces forward operations to the actual file system

• Low-level interfaces provide basic functionality
• POSIX, MPI-IO

• High-level interfaces provide more convenience
• HDF, NetCDF, ADIOS
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I/O Operations Introduction

• open can be used to open and create files
• Features many different flags and modes
• O_RDWR: Open for reading and writing
• O_CREAT: Create file if necessary
• O_TRUNC: Truncate if is exists already

• Initial access happens via a path
• Afterwards, file descriptors can be used

(with a few exceptions)

• All functions provide a return value
• errno should be checked in case of errors

1 fd = open("/path/to/file",

2 O_RDWR | O_CREAT |

3 O_TRUNC ,

4 S_IRUSR | S_IWUSR);

5

6 rv = close(fd);

7 rv = unlink("/path/to/file");

8

9 if (rv != 0) {

10 ...

11 }
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I/O Operations. . . Introduction

1 nb = write(fd, data , sizeof(data));

• write returns the number of written bytes
• Does not necessarily correspond to the given size (error handling!)
• write updates the file pointer internally
• pwrite is a thread-safe alternative to write

• Functions are provided by libc

• Interaction with the file system happens in the kernel
• System calls can be used to pass requests to the kernel
• libc performs system calls transparently
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Virtual File System (Switch) Introduction

• VFS is a central file system component in the kernel
• Provides a standardized interface for all file systems (POSIX)
• Defines file system structure and interface for the most part

• Forwards operations performed by applications to the corresponding file system
• File system is selected based on the mount point

• Enables supporting a wide range of different file systems
• Applications are still portable due to POSIX
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Virtual File System (Switch). . . Introduction

Applications (processes)

VFS

malloc

BIOs (block I/Os)

The Linux Storage Stack Diagram
http://www.thomas-krenn.com/en/wiki/Linux_Storage_Stack_Diagram

Created by Werner Fischer and Georg Schönberger
License: CC-BY-SA 3.0, see http://creativecommons.org/licenses/by-sa/3.0/
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Virtual File System (Switch). . . Introduction

• Applications call functions in libc

• libc performs system calls

• System calls are handled by VFS

• VFS determines correct file system instance

• Data is read/written via page cache or directly

• Block layer handles communication with devices

Applications (processes)
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File System Objects Structure

• Differences from user and system point of view
• Users deal with files and directories that contain data and metadata

• Files consist of bytes, directories contain files and further directories

• The system manages all internals

• Combines individual blocks into files etc.

• Inodes
• The most basic data structure in POSIX file systems

• Each file and directory is represented by an inode (see stat)

• Inodes contain mostly metadata

• Some of the metadata is visible for users, some is internal

• Inodes are typically referenced by ID and have a fixed size
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File System Objects. . . Structure

• Files
• Files contain data in the form of a byte array

• POSIX specifies that data is a byte stream

• Data can be read/written using explicit functions
• Data can also be mapped into memory for implicit access

• Directories
• Directories organize the file system’s namespace

• They can contain files and further directories
• Directories within directories lead to a hierarchical namespace

• From a user’s point of view, directories are a list of entries

• Internally, file systems often use tree structures
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B-Tree vs. B+-Tree Structure

7 16

9 121 2 18 215 6

[CyHawk, 2010]

• B-trees are generalized binary trees

• It is optimized for systems that read/write large blocks
• Pointers and data are mixed in the tree
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B-Tree vs. B+-Tree. . . Structure

7 16

9 121 2 18 215 6 7 16

[CyHawk, 2010]

• B+-trees are a modification of B-trees

• Data is only stored in leaf nodes
• Advantageous for caching since nodes are easier to cache

• Used in NTFS, XFS etc.
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Alternative Trees Structure

• H-trees
• Based on B-trees
• Has different handling of hash collisions
• Used in ext3 and ext4

• BY-trees
• Optimized for write operations
• Operations are buffered in nodes
• Improved performance for insert, range query and update operations
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Files Structure

• pwrite and pread behave like write and read

• They allow specifying the offset and do not
modify the file pointer

• File pointer is shared per file descriptor
• Both functions are therefore thread-safe

• Access is done via an open file descriptor
• Can be used in parallel by multiple threads

1 nb = write(fd, data ,

2 sizeof(data));

3 nb = read(fd, data ,

4 sizeof(data));

5

6 nb = pwrite(fd, data ,

7 sizeof(data), 42);

8 nb = pread(fd, data ,

9 sizeof(data), 42);
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Files. . . Structure

• mmap allows mapping a file into memory
• The file will be mapped at address pt
• There are several visibility settings

(shared vs. private)
• File can be larger than main memory

• Mapped files can be accessed like other
objects in memory

• Can be used in memcpy or assignments
• Operating system takes care of reading

and writing

1 char* pt;

2 pt = mmap(NULL , file_size ,

3 PROT_READ | PROT_WRITE ,

4 MAP_SHARED , fd, offset);

5 memcpy(pt + 42, data ,

6 sizeof(data));

7 memcpy(data , pt + 42,

8 sizeof(data));

9 munmap(pt, FILE_SIZE);
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Files. . . Structure

• Both access models have advantages and disadvantages
• Both modes benefit from the operating system’s cache and optimizations

• Explicit access
• Advantages: high level of control, can be used for direct I/O
• Disadvantages: separate buffers are necessary, copies between kernel and user space

• Implicit access
• Advantages: no separate buffers are necessary, efficient handling by the operating

system, no copies necessary, large files can be mapped completely
• Disadvantages: less control, complicated error handling via signals

Michael Kuhn File Systems 18 / 45



Quiz Structure

• What do you expect pread to return?
1. 0
2. 23
3. 42
4. 4,096

1 int fd;

2

3 fd = open("newfile",

4 O_RDWR | O_CREAT | O_TRUNC ,

5 0666);

6

7 pwrite(fd, data , 23, 0);

8 pread(fd, data , 42, 0);

9

10 close(fd);
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Directories Structure

• Traditionally managed as an array
• Provides low performance since whole array has

to be scanned

• Nowadays, tree structures are used
• More complex but faster

• Name is not stored in inode
• Multiple names can reference the same inode

Inode Size Length Type Name

23 10 2 2 .

24 11 3 2 ..

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

42 14 6 1 hello

42 14 6 1 world

[djwong, 2018]
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Inodes Structure

• Inode structure can become complex
due to backwards compatibility

• Hard to change the on-disk format

• In ext4, many fields are split up due to
backwards compatibility reasons

• Time stamps: 4 bytes for seconds since
1970, 4 bytes for nanoseconds

• Size: Upper and lower 4 bytes

• Fields are overloaded
• Block pointers, extent tree or inline

data (if file is smaller than 60 bytes)
• 100 bytes for extended attributes

Field Size Content

2 Bytes Permissions
2 Bytes User ID
4 Bytes File Size
4 Bytes Access Time
4 Bytes Change Time (Inode)
4 Bytes Modification Time (Data)
4 Bytes Delete Time
2 Bytes Group ID
2 Bytes Link Count

.

.

.
.
.
.

60 Bytes Block Pointers, Extent Tree or Inline Data
.
.
.

.

.

.

4 Bytes Version Number
100 Bytes Free Space

[djwong, 2018]
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Inodes. . . Structure

• Inodes are reference counted
1. Inode is created for foo
2. Reference is added for bar

• ls shows link count
• Number of links to same inode

• stat shows internals
• Including the inode ID

• rm removes a reference
• Inode is freed if there are no

references left

1 $ touch foo

2 $ ls -l foo

3 -rw-r--r--. 1 usr grp 0 Apr 19 18:48 foo

4 $ ln foo bar

5 $ ls -l foo bar

6 -rw-r--r--. 2 usr grp 0 Apr 19 18:48 bar

7 -rw-r--r--. 2 usr grp 0 Apr 19 18:48 foo

8 $ stat --format =%i foo bar

9 641174

10 641174

11 $ rm foo

12 $ ls -l bar

13 -rw-r--r--. 1 usr grp 0 Apr 19 18:48 bar
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POSIX Interface Structure

• Syntax describes available operations and their parameters
• open, close, creat
• read, write, lseek
• chmod, chown, stat
• link, unlink
• (f)truncate, fallocate

• Semantics specifies how I/O operations should behave
• write: “POSIX requires that a read(2) which can be proved to occur after a write() has

returned returns the new data. Note that not all filesystems are POSIX conforming.”
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Sparse Files and Preallocation Structure

• Sparse files are files with holes
• Can be created using lseek

or truncate
• Allows efficiently storing

files with many 0 bytes

• Files have correct logical size
• Size is stored in the inode

• No space is actually allocated
• du shows allocated size

1 $ truncate --size=1G dummy

2

3 $ ls -lh dummy

4 -rw-r--r--. 1 usr grp 1.0G Apr 18 23:49 dummy

5

6 $ du -h dummy

7 0 dummy
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Sparse Files and Preallocation. . . Structure

• Preallocation makes sure
blocks are allocated

• Can be done using
fallocate or
posix_fallocate

• Can prevent fragmentation
• Repeatedly appending data

can fragment file

1 $ fallocate --length 1G dummy

2

3 $ ls -lh dummy

4 -rw-r--r--. 1 usr grp 1.0G Apr 19 19:14 dummy

5

6 $ du -h dummy

7 1,0G dummy
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ext4 Example: ext4

• ext4 is the default file system in many Linux distributions
• It has been introduced in 2006 and marked stable in 2008
• Predecessors: ext, ext2, ext3

• Many parameters have to be defined statically when creating the file system
• Block size, file system size, inode count etc.
• Some of them can be tuned afterwards

• ext4 is a traditional file system
• Data is changed in-place (that is, no copy-on-write)
• It does not support snapshots or checksums for data
• It does not provide any other convenience features
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ext Example: ext4

• ext was the first file system specifically designed for Linux
• First file system to use the VFS layer

• Inspired by the Unix File System (UFS)

• Got rid of limitations within the MINIX file system
• File sizes up to 2 GB
• File names up to 255 characters
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ext2 Example: ext4

• ext2 introduced several new features and enhancements
• Separate time stamps for access, change and modification
• Data structures were set up for future extensions

• Test environment for new VFS functions
• Access Control Lists (ACLs)
• Extended Attributes
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ext3 Example: ext4

• ext3 introduced journaling to the file system
• Will be explained later

• The file system can be resized at runtime
• Useful for LVM environments

• Large directories can use H-trees
• Reduces lookup times
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ext4 Example: ext4

• ext4 further improved the file system
• Larger file systems, files and directories
• Extents
• Preallocation, delayed allocation and improved multi-block allocation
• Journal checksums
• Faster file system checks
• Nanosecond time stamps
• Support for TRIM (SSDs)
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ext4. . . Example: ext4

• The storage device is separated into multiple
block groups for management reasons

• Flexible block groups merge multiple groups

• Block size determines the number of inodes and
data blocks per block group

Content Size
Padding (Block Group 0) 1,024 Bytes
Superblock 1 Block
Group Descriptions m Blocks
Reserved GDT Blocks n Blocks
Data Bitmap 1 Block
Inode Bitmap 1 Block
Inode Table k Blocks
Data Blocks l Blocks

[djwong, 2018]
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ext4. . . Example: ext4

Block Size 1KiB 2KiB 4KiB 64KiB

Blocks 264 264 264 264

Inodes 232 232 232 232

File System Size 16 ZiB 32 ZiB 64 ZiB 1 YiB
File Size (Extents) 4 TiB 8 TiB 16 TiB 256 TiB
File Size (Blocks) 16 GiB 256 GiB 4 TiB 256 PiB

[djwong, 2018]

• Default block size is typically 4 KiB
• Block size should not be larger than the system’s page size

• There are different maximum file sizes when using extents and blocks
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Allocation Example: ext4

1. Block-based
• Files are a collection of many

same-sized blocks (typically 4 KiB)
• The inode contains pointers to all

blocks of a file

• Direct, indirect, double indirect and
triple indirect

• Significant overhead for large files due
to amount of pointers

• Example: 1 TiB large size requires
268,435,456 pointers

• The pointer structure also limits the
maximum file size

[Pomeranz, 2008]
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Allocation. . . Example: ext4

2. Extent-based
• The goal is to have as few extents that are as large as possible

• The addresses of four extents can be stored in the inode
• Additional extents are stored in a tree structure using blocks

• An extent is a pointer to a start block and length

• Maximum length: 32,768 blocks
• Results in a maximum extent size of 128 MiB when using 4 KiB blocks

• Extents allow larger files when using common block sizes

Michael Kuhn File Systems 34 / 45



Allocation. . . Example: ext4

• Block allocation
• Try to allocate contiguous blocks for faster access
• Try to allocate blocks within the same block group

• Multi-block allocation
• Speculatively allocate 8 KiB when creating a file

• Delayed allocation
• Blocks are only allocated when they have to be written to the storage device
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Allocation. . . Example: ext4

• Files and directories
• Blocks are allocated in the inode’s block group if possible
• Files’ blocks are allocated in the directory’s block group if possible

• Goals of allocation strategies
• Try to allow large accesses

• HDDs can only deliver low IOPS values due to high seek times

• Accesses should be close to each other

• Reduces head movements when using HDDs
• The block group’s metadata might already be cached

• These optimizations are less relevant for SSDs
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Journaling Example: ext4

• Problem: File system operations typically require multiple steps
• Example: Deleting a file

1. Removing the directory entry
2. Freeing the data blocks
3. Freeing the inode

• This is problematic in case of a crash

• Journaling can be used to ensure the file system’s consistency
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Journaling. . . Example: ext4

• Planned changes are first written to the journal
• They are removed again when an operation is successful

• In case of a crash, the journal is checked for outstanding operations
• Changes are repeated or discarded

• There are different modes with different performance characteristics
• Metadata journaling or full journaling
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Journaling. . . Example: ext4

• Journal: All changes are written to the journal
• Deactivates delayed allocation and O_DIRECT

• Ordered: Metadata is written to the journal
• Corresponding data is written before the metadata
• Might be problematic with delayed allocation
• This is the default journaling mode

• Writeback: Metadata is written to the journal
• Allows data to be written after metadata has been committed
• Can result in old data appearing after a recovery
• Offers the highest performance but the lowest safety
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Object Stores Alternatives

• Object stores can be seen as “file systems light”
• They provide a thin abstraction layer above storage devices
• Data is accessed using an object-based interface

• Object stores only provide some basic functions
• Create, open, close, read, write of objects
• Sometimes it is only possible to read or write complete objects

• Some object stores support so-called object sets
• Can be used to group related objects
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Object Stores. . . Alternatives

• Object stores typically do not use paths
• Access is handled via unique IDs
• There is no overhead caused by path traversal and resolution
• The resulting namespace is very flat

• Block/extent allocation is performed by the object store
• Block/extent management is one of the most complex aspects

• Object store concepts are available on different layers of abstraction
• HDD, file system, cloud storage etc.
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Object Stores. . . Alternatives

• Object stores can be used as an underlying technology for file systems
• Allows concentrating on file system functionality
• Storage management is then handled by a separate layer

• Separation is often not useful for local file systems
• Functionality and structure mostly determined by POSIX
• One main difference of file systems is block allocation

• Separation can make sense for parallel distributed file systems
• Eliminates redundancy caused by underlying local file systems
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Performance Considerations Alternatives

• File system performance is often hard to assess
• There are many factors and many involved components
• Depending on the use case, data or metadata performance might be more important
• The used functions and access patterns heavily influence achievable performance
• It is important to always measure for concrete workloads

• Data safety typically decreases performance
• Full journaling requires data copies, checksums require computing power etc.
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Kernel vs. User Space Alternatives

• File systems are typically implemented
within the kernel

• High maintenance cost
• Implementation is also more complex

and error-prone

• Filesystem in Userspace (FUSE)
• Kernel module and user space library
• Development using library and run as

normal processes
• VFS and kernel module forward I/O

operations to user space
• Requires mode/context switches and

therefore has a lower performance

libfuse

glibcglibc

FUSE

Ext3

...

VFS

ls -l /tmp/fuse

./hello /tmp/fuse

Kernel

Userspace

NFS

[Sven, 2007]
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Summary Summary

• File systems manage data and metadata using standardized interfaces
• The main object are files and directories, inodes are used internally

• Specialized data structures and algorithms are used for efficiency and safety
• Journaling is used to ensure consistency
• Extents and tree structures decrease overhead

• Local file systems are often used for parallel distributed file systems
• They have highly-optimized block allocation schemes etc.
• Object stores can often be an alternative for file systems

• Modern file systems integrate additional functionality
• Volume management, checksums, snapshots etc.
• Both convenience and safety are increasingly important
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