
File Systems

Parallel Storage Systems
2023-05-08

Jun.-Prof. Dr. Michael Kuhn
michael.kuhn@ovgu.de

Parallel Computing and I/O
Institute for Intelligent Cooperating Systems
Faculty of Computer Science
Otto von Guericke University Magdeburg
https://parcio.ovgu.de

mailto:michael.kuhn@ovgu.de
https://parcio.ovgu.de

Outline

File Systems

Review

Introduction

Structure

Example: ext4

Alternatives

Summary

Storage Devices Review

• Which hard-disk drive parameter is increasing at the slowest rate?
1. Capacity
2. Throughput
3. Latency
4. Density

Michael Kuhn File Systems 1 / 45

Storage Devices Review

• Which RAID level does not provide redundancy?
1. RAID 0
2. RAID 1
3. RAID 5
4. RAID 6

Michael Kuhn File Systems 1 / 45

Storage Devices Review

• Which problem is called write hole?
1. Inconsistency due to non-atomic data/parity update
2. Incorrect parity calculation
3. Storage device failure during reconstruction
4. Partial stripe update

Michael Kuhn File Systems 1 / 45

Outline

File Systems

Review

Introduction

Structure

Example: ext4

Alternatives

Summary

Motivation Introduction

1. File systems provide structure
• File systems typically use a hierarchical organization
• Hierarchy is built from files and directories
• Access is handled via file and directory names
• Other approaches: Tagging, queries etc.

2. File systems manage data and metadata
• They are responsible for block allocation and management
• Metadata includes access permissions, time stamps etc.
• File systems use underlying storage devices
• Devices can also be provided by storage arrays such as RAID

Michael Kuhn File Systems 2 / 45

Examples Introduction

• Linux: tmpfs, ext4, XFS, btrfs, ZFS
• File systems (more or less) conform to POSIX

• Windows: FAT, exFAT, NTFS

• OS X: HFS+, APFS

• Universal: ISO9660, UDF
• Can be used on arbitrary media, mostly used on optical ones

• Pseudo: sysfs, proc
• Allow changing system settings etc.

Michael Kuhn File Systems 3 / 45

Examples. . . Introduction

• Network: NFS, AFS, Samba
• Usually provide access to an underlying file system via the network

• Cryptographic: EncFS, eCryptfs
• Typically make use of an underlying file system

• Parallel distributed: Spectrum Scale, Lustre, OrangeFS, CephFS, GlusterFS
• Distribute data across multiple servers

Michael Kuhn File Systems 4 / 45

I/O Interfaces Introduction

• I/O operations are realized using I/O interfaces
• Interfaces are available for different abstraction levels
• Interfaces forward operations to the actual file system

• Low-level interfaces provide basic functionality
• POSIX, MPI-IO

• High-level interfaces provide more convenience
• HDF, NetCDF, ADIOS

Michael Kuhn File Systems 5 / 45

I/O Operations Introduction

• open can be used to open and create files
• Features many different flags and modes
• O_RDWR: Open for reading and writing
• O_CREAT: Create file if necessary
• O_TRUNC: Truncate if is exists already

• Initial access happens via a path
• Afterwards, file descriptors can be used

(with a few exceptions)

• All functions provide a return value
• errno should be checked in case of errors

1 fd = open("/path/to/file",

2 O_RDWR | O_CREAT |

3 O_TRUNC ,

4 S_IRUSR | S_IWUSR);

5

6 rv = close(fd);

7 rv = unlink("/path/to/file");

8

9 if (rv != 0) {

10 ...

11 }

Michael Kuhn File Systems 6 / 45

I/O Operations. . . Introduction

1 nb = write(fd, data , sizeof(data));

• write returns the number of written bytes
• Does not necessarily correspond to the given size (error handling!)
• write updates the file pointer internally
• pwrite is a thread-safe alternative to write

• Functions are provided by libc

• Interaction with the file system happens in the kernel
• System calls can be used to pass requests to the kernel
• libc performs system calls transparently

Michael Kuhn File Systems 7 / 45

Virtual File System (Switch) Introduction

• VFS is a central file system component in the kernel
• Provides a standardized interface for all file systems (POSIX)
• Defines file system structure and interface for the most part

• Forwards operations performed by applications to the corresponding file system
• File system is selected based on the mount point

• Enables supporting a wide range of different file systems
• Applications are still portable due to POSIX

Michael Kuhn File Systems 8 / 45

Virtual File System (Switch). . . Introduction

Applications (processes)

VFS

malloc

BIOs (block I/Os)

The Linux Storage Stack Diagram
http://www.thomas-krenn.com/en/wiki/Linux_Storage_Stack_Diagram

Created by Werner Fischer and Georg Schönberger
License: CC-BY-SA 3.0, see http://creativecommons.org/licenses/by-sa/3.0/

ext2 ext3
btrfs

ext4 xfs

ifs iso9660
...

NFS coda
Network FS

gfs ocfs

smbfs ...

Pseudo FS Special
purpose FSproc sysfs

futexfs

usbfs ...

tmpfs ramfs
devtmpfs

pipefs

network

mmap
(anonymous pages)

Block-based FS

re
ad

(2
)

w
rit

e(
2)

op
en

(2
)

st
at

(2
)

ch
m

od
(2

)

...

Page
cache

mdraid
...

stackable

Devices on top of “normal”
block devices drbd

(optional)

LVM
BIOs (block I/Os)

ceph

struct bio
- sector on disk
 - bio_vec cnt
- bio_vec index
- bio_vec list

- sector cnt

Direct I/O
(O_DIRECT)

device mapper
dm-crypt dm-mirror

dm-thindm-cache bcache

unionfs FUSE

dm-raid

ecryptfs

Stackable FS

overlayfs

userspace (e.g. sshfs)

dm-delay

[Fischer and Schönberger, 2017]
Michael Kuhn File Systems 9 / 45

Virtual File System (Switch). . . Introduction

• Applications call functions in libc

• libc performs system calls

• System calls are handled by VFS

• VFS determines correct file system instance

• Data is read/written via page cache or directly

• Block layer handles communication with devices

Applications (processes)

VFS

Request-based
device mapper targets

dm-multipath

Physical devices

HDD SSD DVD
drive

Micron
PCIe card

LSI
RAID

Adaptec
RAID

Qlogic
HBA

Emulex
HBA

malloc

BIOs (block I/Os)

sysfs
(transport attributes) SCSI upper level drivers

/dev/sda

scsi-mq

.../dev/sd*

SCSI low level drivers
megaraid_sas

aacraid

qla2xxx ...libata

ahci ata_piix ... lpfc

Transport classes
scsi_transport_fc

scsi_transport_sas

scsi_transport_...

/dev/vd*

virtio_blk mtip32xx

/dev/rssd*

The Linux Storage Stack Diagram
http://www.thomas-krenn.com/en/wiki/Linux_Storage_Stack_Diagram

Created by Werner Fischer and Georg Schönberger
License: CC-BY-SA 3.0, see http://creativecommons.org/licenses/by-sa/3.0/

ext2 ext3
btrfs

ext4 xfs

ifs iso9660
...

NFS coda
Network FS

gfs ocfs

smbfs ...

Pseudo FS Special
purpose FSproc sysfs

futexfs

usbfs ...

tmpfs ramfs
devtmpfs

pipefs

network

nvme
device

The Linux Storage Stack Diagram

version 4.10, 2017-03-10
outlines the Linux storage stack as of Kernel version 4.10

mmap
(anonymous pages)

iscsi_tcp

network

/dev/rbd*

Block-based FS

re
ad

(2
)

w
rit

e(
2)

op
en

(2
)

st
at

(2
)

ch
m

od
(2

)

...

Page
cache

mdraid
...

stackable

Devices on top of “normal”
block devices drbd

(optional)

LVM
BIOs (block I/Os)

BIOs BIOs

Block Layer

multi queue

blkmq

Software
queues

Hardware
dispatch
queues

...

...

hooked in device drivers
(they hook in like stacked
devices do)

BIOs

Maps BIOs to requests

deadline
cfq

noop

I/O scheduler

Hardware
dispatch
queue

Request
based drivers

BIO
based drivers

Request
based drivers

ceph

struct bio
- sector on disk
 - bio_vec cnt
- bio_vec index
- bio_vec list

- sector cnt

Fi
br

e
Ch

an
ne

l
ov

er
 E

th
er

ne
t

LIO

target_core_mod

tc
m

_f
c

Fi
re

W
ire

IS
CS

I

Direct I/O
(O_DIRECT)

device mapper

network

is
cs

i_
ta

rg
et

_m
od

sb
p_

ta
rg

et

target_core_file

target_core_iblock

target_core_pscsi

vfs_writev, vfs_readv, ...

dm-crypt dm-mirror
dm-thindm-cache

tc
m

_q
la

2x
xx

tc
m

_u
sb

_g
ad

ge
t

U
SBFi
br

e
Ch

an
ne

l

tc
m

_v
ho

st
Vi

rt
ua

l H
os

t

/dev/nvme*n*

SCSI mid layer

virtio_pci

LSI 12Gbs
SAS HBA

mpt3sas

bcache

/dev/nullb*

vmw_pvscsi

/dev/skd*

skd

stec
device

virtio_scsi

para-virtualized
SCSI

VMware's
para-virtualized

SCSI

target_core_user

unionfs FUSE

/dev/mmcblk*p*

dm-raid

/dev/sr* /dev/st*

pm8001

PMC-Sierra
HBA

SD-/MMC-Card

/dev/rsxx*

rsxx

IBM flash
adapter

/dev/zram*

memory

null_blk

ufs

userspace

ecryptfs

Stackable FS

mobile device
flash memory

nvme

overlayfs

userspace (e.g. sshfs)

mmcrbdzram

dm-delay

/dev/nbd*

nbd

/dev/ubiblock*

ubi

/dev/loop*

loop

[Fischer and Schönberger, 2017]
Michael Kuhn File Systems 10 / 45

Outline

File Systems

Review

Introduction

Structure

Example: ext4

Alternatives

Summary

File System Objects Structure

• Differences from user and system point of view
• Users deal with files and directories that contain data and metadata

• Files consist of bytes, directories contain files and further directories

• The system manages all internals

• Combines individual blocks into files etc.

• Inodes
• The most basic data structure in POSIX file systems

• Each file and directory is represented by an inode (see stat)

• Inodes contain mostly metadata

• Some of the metadata is visible for users, some is internal

• Inodes are typically referenced by ID and have a fixed size

Michael Kuhn File Systems 11 / 45

File System Objects. . . Structure

• Files
• Files contain data in the form of a byte array

• POSIX specifies that data is a byte stream

• Data can be read/written using explicit functions
• Data can also be mapped into memory for implicit access

• Directories
• Directories organize the file system’s namespace

• They can contain files and further directories
• Directories within directories lead to a hierarchical namespace

• From a user’s point of view, directories are a list of entries

• Internally, file systems often use tree structures

Michael Kuhn File Systems 12 / 45

B-Tree vs. B+-Tree Structure

7 16

9 121 2 18 215 6

[CyHawk, 2010]

• B-trees are generalized binary trees

• It is optimized for systems that read/write large blocks
• Pointers and data are mixed in the tree

Michael Kuhn File Systems 13 / 45

B-Tree vs. B+-Tree. . . Structure

7 16

9 121 2 18 215 6 7 16

[CyHawk, 2010]

• B+-trees are a modification of B-trees

• Data is only stored in leaf nodes
• Advantageous for caching since nodes are easier to cache

• Used in NTFS, XFS etc.

Michael Kuhn File Systems 14 / 45

Alternative Trees Structure

• H-trees
• Based on B-trees
• Has different handling of hash collisions
• Used in ext3 and ext4

• BY-trees
• Optimized for write operations
• Operations are buffered in nodes
• Improved performance for insert, range query and update operations

Michael Kuhn File Systems 15 / 45

Files Structure

• pwrite and pread behave like write and read

• They allow specifying the offset and do not
modify the file pointer

• File pointer is shared per file descriptor
• Both functions are therefore thread-safe

• Access is done via an open file descriptor
• Can be used in parallel by multiple threads

1 nb = write(fd, data ,

2 sizeof(data));

3 nb = read(fd, data ,

4 sizeof(data));

5

6 nb = pwrite(fd, data ,

7 sizeof(data), 42);

8 nb = pread(fd, data ,

9 sizeof(data), 42);

Michael Kuhn File Systems 16 / 45

Files. . . Structure

• mmap allows mapping a file into memory
• The file will be mapped at address pt
• There are several visibility settings

(shared vs. private)
• File can be larger than main memory

• Mapped files can be accessed like other
objects in memory

• Can be used in memcpy or assignments
• Operating system takes care of reading

and writing

1 char* pt;

2 pt = mmap(NULL , file_size ,

3 PROT_READ | PROT_WRITE ,

4 MAP_SHARED , fd, offset);

5 memcpy(pt + 42, data ,

6 sizeof(data));

7 memcpy(data , pt + 42,

8 sizeof(data));

9 munmap(pt, FILE_SIZE);

Michael Kuhn File Systems 17 / 45

Files. . . Structure

• Both access models have advantages and disadvantages
• Both modes benefit from the operating system’s cache and optimizations

• Explicit access
• Advantages: high level of control, can be used for direct I/O
• Disadvantages: separate buffers are necessary, copies between kernel and user space

• Implicit access
• Advantages: no separate buffers are necessary, efficient handling by the operating

system, no copies necessary, large files can be mapped completely
• Disadvantages: less control, complicated error handling via signals

Michael Kuhn File Systems 18 / 45

Quiz Structure

• What do you expect pread to return?
1. 0
2. 23
3. 42
4. 4,096

1 int fd;

2

3 fd = open("newfile",

4 O_RDWR | O_CREAT | O_TRUNC ,

5 0666);

6

7 pwrite(fd, data , 23, 0);

8 pread(fd, data , 42, 0);

9

10 close(fd);

Michael Kuhn File Systems 19 / 45

Directories Structure

• Traditionally managed as an array
• Provides low performance since whole array has

to be scanned

• Nowadays, tree structures are used
• More complex but faster

• Name is not stored in inode
• Multiple names can reference the same inode

Inode Size Length Type Name

23 10 2 2 .

24 11 3 2 ..

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

42 14 6 1 hello

42 14 6 1 world

[djwong, 2018]

Michael Kuhn File Systems 20 / 45

Inodes Structure

• Inode structure can become complex
due to backwards compatibility

• Hard to change the on-disk format

• In ext4, many fields are split up due to
backwards compatibility reasons

• Time stamps: 4 bytes for seconds since
1970, 4 bytes for nanoseconds

• Size: Upper and lower 4 bytes

• Fields are overloaded
• Block pointers, extent tree or inline

data (if file is smaller than 60 bytes)
• 100 bytes for extended attributes

Field Size Content

2 Bytes Permissions
2 Bytes User ID
4 Bytes File Size
4 Bytes Access Time
4 Bytes Change Time (Inode)
4 Bytes Modification Time (Data)
4 Bytes Delete Time
2 Bytes Group ID
2 Bytes Link Count

.

.

.
.
.
.

60 Bytes Block Pointers, Extent Tree or Inline Data
.
.
.

.

.

.

4 Bytes Version Number
100 Bytes Free Space

[djwong, 2018]

Michael Kuhn File Systems 21 / 45

Inodes. . . Structure

• Inodes are reference counted
1. Inode is created for foo
2. Reference is added for bar

• ls shows link count
• Number of links to same inode

• stat shows internals
• Including the inode ID

• rm removes a reference
• Inode is freed if there are no

references left

1 $ touch foo

2 $ ls -l foo

3 -rw-r--r--. 1 usr grp 0 Apr 19 18:48 foo

4 $ ln foo bar

5 $ ls -l foo bar

6 -rw-r--r--. 2 usr grp 0 Apr 19 18:48 bar

7 -rw-r--r--. 2 usr grp 0 Apr 19 18:48 foo

8 $ stat --format =%i foo bar

9 641174

10 641174

11 $ rm foo

12 $ ls -l bar

13 -rw-r--r--. 1 usr grp 0 Apr 19 18:48 bar

Michael Kuhn File Systems 22 / 45

POSIX Interface Structure

• Syntax describes available operations and their parameters
• open, close, creat
• read, write, lseek
• chmod, chown, stat
• link, unlink
• (f)truncate, fallocate

• Semantics specifies how I/O operations should behave
• write: “POSIX requires that a read(2) which can be proved to occur after a write() has

returned returns the new data. Note that not all filesystems are POSIX conforming.”

Michael Kuhn File Systems 23 / 45

Sparse Files and Preallocation Structure

• Sparse files are files with holes
• Can be created using lseek

or truncate
• Allows efficiently storing

files with many 0 bytes

• Files have correct logical size
• Size is stored in the inode

• No space is actually allocated
• du shows allocated size

1 $ truncate --size=1G dummy

2

3 $ ls -lh dummy

4 -rw-r--r--. 1 usr grp 1.0G Apr 18 23:49 dummy

5

6 $ du -h dummy

7 0 dummy

Michael Kuhn File Systems 24 / 45

Sparse Files and Preallocation. . . Structure

• Preallocation makes sure
blocks are allocated

• Can be done using
fallocate or
posix_fallocate

• Can prevent fragmentation
• Repeatedly appending data

can fragment file

1 $ fallocate --length 1G dummy

2

3 $ ls -lh dummy

4 -rw-r--r--. 1 usr grp 1.0G Apr 19 19:14 dummy

5

6 $ du -h dummy

7 1,0G dummy

Michael Kuhn File Systems 25 / 45

Outline

File Systems

Review

Introduction

Structure

Example: ext4

Alternatives

Summary

ext4 Example: ext4

• ext4 is the default file system in many Linux distributions
• It has been introduced in 2006 and marked stable in 2008
• Predecessors: ext, ext2, ext3

• Many parameters have to be defined statically when creating the file system
• Block size, file system size, inode count etc.
• Some of them can be tuned afterwards

• ext4 is a traditional file system
• Data is changed in-place (that is, no copy-on-write)
• It does not support snapshots or checksums for data
• It does not provide any other convenience features

Michael Kuhn File Systems 26 / 45

ext Example: ext4

• ext was the first file system specifically designed for Linux
• First file system to use the VFS layer

• Inspired by the Unix File System (UFS)

• Got rid of limitations within the MINIX file system
• File sizes up to 2 GB
• File names up to 255 characters

Michael Kuhn File Systems 27 / 45

ext2 Example: ext4

• ext2 introduced several new features and enhancements
• Separate time stamps for access, change and modification
• Data structures were set up for future extensions

• Test environment for new VFS functions
• Access Control Lists (ACLs)
• Extended Attributes

Michael Kuhn File Systems 28 / 45

ext3 Example: ext4

• ext3 introduced journaling to the file system
• Will be explained later

• The file system can be resized at runtime
• Useful for LVM environments

• Large directories can use H-trees
• Reduces lookup times

Michael Kuhn File Systems 29 / 45

ext4 Example: ext4

• ext4 further improved the file system
• Larger file systems, files and directories
• Extents
• Preallocation, delayed allocation and improved multi-block allocation
• Journal checksums
• Faster file system checks
• Nanosecond time stamps
• Support for TRIM (SSDs)

Michael Kuhn File Systems 30 / 45

ext4. . . Example: ext4

• The storage device is separated into multiple
block groups for management reasons

• Flexible block groups merge multiple groups

• Block size determines the number of inodes and
data blocks per block group

Content Size
Padding (Block Group 0) 1,024 Bytes
Superblock 1 Block
Group Descriptions m Blocks
Reserved GDT Blocks n Blocks
Data Bitmap 1 Block
Inode Bitmap 1 Block
Inode Table k Blocks
Data Blocks l Blocks

[djwong, 2018]

Michael Kuhn File Systems 31 / 45

ext4. . . Example: ext4

Block Size 1KiB 2KiB 4KiB 64KiB

Blocks 264 264 264 264

Inodes 232 232 232 232

File System Size 16 ZiB 32 ZiB 64 ZiB 1 YiB
File Size (Extents) 4 TiB 8 TiB 16 TiB 256 TiB
File Size (Blocks) 16 GiB 256 GiB 4 TiB 256 PiB

[djwong, 2018]

• Default block size is typically 4 KiB
• Block size should not be larger than the system’s page size

• There are different maximum file sizes when using extents and blocks

Michael Kuhn File Systems 32 / 45

Allocation Example: ext4

1. Block-based
• Files are a collection of many

same-sized blocks (typically 4 KiB)
• The inode contains pointers to all

blocks of a file

• Direct, indirect, double indirect and
triple indirect

• Significant overhead for large files due
to amount of pointers

• Example: 1 TiB large size requires
268,435,456 pointers

• The pointer structure also limits the
maximum file size

[Pomeranz, 2008]

Michael Kuhn File Systems 33 / 45

Allocation. . . Example: ext4

2. Extent-based
• The goal is to have as few extents that are as large as possible

• The addresses of four extents can be stored in the inode
• Additional extents are stored in a tree structure using blocks

• An extent is a pointer to a start block and length

• Maximum length: 32,768 blocks
• Results in a maximum extent size of 128 MiB when using 4 KiB blocks

• Extents allow larger files when using common block sizes

Michael Kuhn File Systems 34 / 45

Allocation. . . Example: ext4

• Block allocation
• Try to allocate contiguous blocks for faster access
• Try to allocate blocks within the same block group

• Multi-block allocation
• Speculatively allocate 8 KiB when creating a file

• Delayed allocation
• Blocks are only allocated when they have to be written to the storage device

Michael Kuhn File Systems 35 / 45

Allocation. . . Example: ext4

• Files and directories
• Blocks are allocated in the inode’s block group if possible
• Files’ blocks are allocated in the directory’s block group if possible

• Goals of allocation strategies
• Try to allow large accesses

• HDDs can only deliver low IOPS values due to high seek times

• Accesses should be close to each other

• Reduces head movements when using HDDs
• The block group’s metadata might already be cached

• These optimizations are less relevant for SSDs

Michael Kuhn File Systems 36 / 45

Journaling Example: ext4

• Problem: File system operations typically require multiple steps
• Example: Deleting a file

1. Removing the directory entry
2. Freeing the data blocks
3. Freeing the inode

• This is problematic in case of a crash

• Journaling can be used to ensure the file system’s consistency

Michael Kuhn File Systems 37 / 45

Journaling. . . Example: ext4

• Planned changes are first written to the journal
• They are removed again when an operation is successful

• In case of a crash, the journal is checked for outstanding operations
• Changes are repeated or discarded

• There are different modes with different performance characteristics
• Metadata journaling or full journaling

Michael Kuhn File Systems 38 / 45

Journaling. . . Example: ext4

• Journal: All changes are written to the journal
• Deactivates delayed allocation and O_DIRECT

• Ordered: Metadata is written to the journal
• Corresponding data is written before the metadata
• Might be problematic with delayed allocation
• This is the default journaling mode

• Writeback: Metadata is written to the journal
• Allows data to be written after metadata has been committed
• Can result in old data appearing after a recovery
• Offers the highest performance but the lowest safety

Michael Kuhn File Systems 39 / 45

Outline

File Systems

Review

Introduction

Structure

Example: ext4

Alternatives

Summary

Object Stores Alternatives

• Object stores can be seen as “file systems light”
• They provide a thin abstraction layer above storage devices
• Data is accessed using an object-based interface

• Object stores only provide some basic functions
• Create, open, close, read, write of objects
• Sometimes it is only possible to read or write complete objects

• Some object stores support so-called object sets
• Can be used to group related objects

Michael Kuhn File Systems 40 / 45

Object Stores. . . Alternatives

• Object stores typically do not use paths
• Access is handled via unique IDs
• There is no overhead caused by path traversal and resolution
• The resulting namespace is very flat

• Block/extent allocation is performed by the object store
• Block/extent management is one of the most complex aspects

• Object store concepts are available on different layers of abstraction
• HDD, file system, cloud storage etc.

Michael Kuhn File Systems 41 / 45

Object Stores. . . Alternatives

• Object stores can be used as an underlying technology for file systems
• Allows concentrating on file system functionality
• Storage management is then handled by a separate layer

• Separation is often not useful for local file systems
• Functionality and structure mostly determined by POSIX
• One main difference of file systems is block allocation

• Separation can make sense for parallel distributed file systems
• Eliminates redundancy caused by underlying local file systems

Michael Kuhn File Systems 42 / 45

Performance Considerations Alternatives

• File system performance is often hard to assess
• There are many factors and many involved components
• Depending on the use case, data or metadata performance might be more important
• The used functions and access patterns heavily influence achievable performance
• It is important to always measure for concrete workloads

• Data safety typically decreases performance
• Full journaling requires data copies, checksums require computing power etc.

Michael Kuhn File Systems 43 / 45

Kernel vs. User Space Alternatives

• File systems are typically implemented
within the kernel

• High maintenance cost
• Implementation is also more complex

and error-prone

• Filesystem in Userspace (FUSE)
• Kernel module and user space library
• Development using library and run as

normal processes
• VFS and kernel module forward I/O

operations to user space
• Requires mode/context switches and

therefore has a lower performance

libfuse

glibcglibc

FUSE

Ext3

...

VFS

ls -l /tmp/fuse

./hello /tmp/fuse

Kernel

Userspace

NFS

[Sven, 2007]

Michael Kuhn File Systems 44 / 45

Outline

File Systems

Review

Introduction

Structure

Example: ext4

Alternatives

Summary

Summary Summary

• File systems manage data and metadata using standardized interfaces
• The main object are files and directories, inodes are used internally

• Specialized data structures and algorithms are used for efficiency and safety
• Journaling is used to ensure consistency
• Extents and tree structures decrease overhead

• Local file systems are often used for parallel distributed file systems
• They have highly-optimized block allocation schemes etc.
• Object stores can often be an alternative for file systems

• Modern file systems integrate additional functionality
• Volume management, checksums, snapshots etc.
• Both convenience and safety are increasingly important

Michael Kuhn File Systems 45 / 45

References

[CyHawk, 2010] CyHawk (2010). B-tree. https://en.wikipedia.org/wiki/File:B-tree.svg.
License: CC BY-SA 3.0.

[djwong, 2018] djwong (2018). ext4 Data Structures and Algorithms.
https://www.kernel.org/doc/html/latest/filesystems/ext4/index.html.

[Fischer and Schönberger, 2017] Fischer, W. and Schönberger, G. (2017). Linux Storage Stack
Diagramm. https://www.thomas-krenn.com/de/wiki/Linux_Storage_Stack_Diagramm.

[Pomeranz, 2008] Pomeranz, H. (2008). Understanding Indirect Blocks in Unix File Systems.
https://www.sans.org/blog/understanding-indirect-blocks-in-unix-file-systems/.

[Sven, 2007] Sven (2007). Filesystem in Userspace.
https://en.wikipedia.org/wiki/File:FUSE_structure.svg. License: CC BY-SA 3.0.

https://en.wikipedia.org/wiki/File:B-tree.svg
https://www.kernel.org/doc/html/latest/filesystems/ext4/index.html
https://www.thomas-krenn.com/de/wiki/Linux_Storage_Stack_Diagramm
https://www.sans.org/blog/understanding-indirect-blocks-in-unix-file-systems/
https://en.wikipedia.org/wiki/File:FUSE_structure.svg

	File Systems
	Review
	Introduction
	Structure
	Example: ext4
	Alternatives
	Summary

	Appendix
	References
	

