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Parallel Distributed File Systems Review

• Across how many servers would you distribute a 1 GiB file?
1. One server
2. 64 servers
3. 1,024 servers
4. As many servers as possible
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Parallel Distributed File Systems Review

• Why is the starting server for data distribution often chosen randomly?
• Easy implementation
• Even load distribution
• Fault tolerance
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Parallel Distributed File Systems Review

• What is the difference between POSIX and NFS semantics?
1. POSIX guarantees each write will be synchronized to storage immediately
2. POSIX guarantees each write will be visible by other processes immediately
3. NFS guarantees each write will not be visible by other processes until the file is closed
4. NFS guarantees data will be synchronized to storage when the file is closed
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Parallel Distributed File Systems Review

• When would you stripe a directory across multiple servers?
1. Always
2. When it contains more than 1,000 files
3. When it contains more than 1,000,000 files
4. Never
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Overview Introduction

• Parallel applications require efficient parallel I/O
• Synchronous and serial I/O are bottlenecks

• Synchronous I/O causes all tasks to wait for completion

• Serial I/O requires sending all data to a chosen task
• One task cannot hold all data, must be done iteratively

• Common scenarios in HPC
• Reading input data

• Starting conditions, large data sets

• Writing output data

• Result data, checkpoints

[Gorda, 2013]
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Overview. . . Introduction

• MPI-IO denotes the I/O part of the MPI standard
• MPI-IO was introduced with MPI 2.0 in 1997
• Parallel applications often use MPI anyway

• The most popular implementation is called ROMIO
• ROMIO is being developed and distributed as part of MPICH
• It is also being used by OpenMPI and other MPICH derivates
• Uses the Abstract-Device Interface for I/O (ADIO)

• An alternative implementation in OpenMPI is called OMPIO
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Overview. . . Introduction

• MPI-IO provides element-based access
• POSIX only provides a byte stream

• I/O interface is very similar to the communication interface
• Reading and writing behave like sending and receiving
• Collective and non-blocking operations are supported
• MPI-IO also supports derived datatypes

• MPI-IO is typically not used directly by applications
• Instead, I/O libraries such as HDF5 use it internally
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Outlook Introduction

• MPI-IO provides the basis for many I/O libraries
• HDF5 and NetCDF use MPI-IO for parallel access to shared files
• ADIOS also supports MPI-IO for parallel I/O

• POSIX can also be used for parallel I/O
• HDF5 and NetCDF only do serial I/O via POSIX
• ADIOS also supports parallel I/O via POSIX, but not to a shared file

• ROMIO contains efficient algorithms and implementations for parallel I/O
• Frees higher layers from having to implement them as well
• Libraries can focus on their primary tasks
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ROMIO Introduction

• MPI-IO abstracts from the underlying file systems
• MPI-IO provides its own syntax and semantics

• ROMIO supports a wide range of architectures
• IBM SP, Intel Paragon, HP Exemplar, SGI Origin2000, Cray T3E, NEC SX-4 etc.

• ROMIO also supports many file systems
• IBM PIOFS, Intel PFS, HP/Convex HFS, SGI XFS, NEC SFS, PVFS, Lustre, NFS, NTFS,

Unix File System (UFS) etc.
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ROMIO. . . Introduction

• MPI-IO’s interface can be used by applications and libraries
• Provides portability across a wide range of file systems and architectures

• File system specifics are contained in ADIO modules
• Allows providing the best possible performance

• For instance, data distribution functions are often not portable

• Also allows hiding different file system syntax and semantics

• It also contains generic optimizations for parallel I/O
• Optimizations are especially important with growing numbers of processes
• We will take a look at Data Sieving and Two-Phase I/O later
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Basics Concepts and Functionality

• File
• Files are opened collectively by all processes in a communicator
• Access can be done sequentially or randomly
• Files are a collection of typed elements

• File pointer
• File pointer determines position within a file (like POSIX)
• Individual or shared file pointers are possible
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Basics. . . Concepts and Functionality

• Data type
• Smallest possible unit used for accessing a file
• Can also be an elementary type or a derived data type

• Displacement
• Determines the position a file view begins at
• Expressed as a byte position relative from the start of a file

• Can be used for headers etc.
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Basics. . . Concepts and Functionality

• File type
• A pattern that describes the structure of a file
• Consists of data types and holes
• Pattern is repeated within the file

File Type

Data Type

Hole

…Structure
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Basics. . . Concepts and Functionality

• File view
• Process-specific view of the file
• Determined by displacement, data type and file type

File Type (Rank 0)

…Structure

File Type (Rank 1)

File Type (Rank 2)
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Basics. . . Concepts and Functionality

• Offset
• Offset describes a position within a file
• Given as a number of data types
• Interpreted relative to the current file view

• File size
• Size of the file in bytes
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Basics. . . Concepts and Functionality

• File handle
• Describes an open file, similar to a file descriptor
• Required for almost all other operations

• Hints
• Additional information that can be passed to the implementation
• Typically used to improve performance or reduce overhead
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Creating and Opening Files Concepts and Functionality

• MPI_File_open: Opens a file
• comm: Communicator for collective open
• filename: Path to the file
• amode: Access mode used for opening
• info: Optional hints
• fh: File handle for further operations

• MPI_File_close: Closes a file
• fh: File handle

1 int MPI_File_open (MPI_Comm comm ,

2 char* filename ,

3 int amode ,

4 MPI_Info info ,

5 MPI_File* fh)

6

7 int MPI_File_close (MPI_File* fh)
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Creating and Opening Files. . . Concepts and Functionality

• MPI_File_open is a collective operation
• All processes have to open the same file (potentially different names)
• Process-local files are possible by using MPI_COMM_SELF

• File name is implementation-specific
• ROMIO allows specifying an ADIO module explicitly

• For example: pvfs2:/pvfs/path/to/file

• The initial file view is a byte stream (like POSIX)
• That is, all processes have access to the whole file
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Creating and Opening Files. . . Concepts and Functionality

• MPI_File_open offers multiple access modes
• MPI_MODE_RDONLY: Read-only
• MPI_MODE_RDWR: Read and write
• MPI_MODE_WRONLY: Write-only
• MPI_MODE_CREATE: Create file if it does not exist
• MPI_MODE_EXCL: Return error if file exists already
• MPI_MODE_DELETE_ON_CLOSE: Delete file on close
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Creating and Opening Files. . . Concepts and Functionality

• MPI_File_open offers multiple access modes. . .
• MPI_MODE_UNIQUE_OPEN: File will not be opened concurrently
• MPI_MODE_SEQUENTIAL: File will be accessed only sequentially
• MPI_MODE_APPEND: File pointers will be set to the end of file

• Access modes can also be combined when it makes sense

• Some modes offer potential for optimizations
• Caching can be enabled for MPI_MODE_UNIQUE_OPEN
• Read ahead can be used for MPI_MODE_SEQUENTIAL
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Quiz Concepts and Functionality

• What happens if a file opened with MPI_MODE_UNIQUE_OPEN is opened elsewhere?
1. MPI will fall back to regular open
2. MPI will abort the application
3. MPI will crash
4. Undefined behavior
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Positioning Concepts and Functionality

• MPI_File_seek: Sets the file pointer
• fh: File handle
• offset: Offset within file
• whence: Positioning mode
• Behaves like POSIX’s lseek

1 int MPI_File_seek (MPI_File fh,

2 MPI_Offset offset ,

3 int whence)
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Positioning. . . Concepts and Functionality

• MPI supports three modes for positioning
1. Individual file pointers
2. Shared file pointers
3. Explicit offsets

1. Individual file pointers
• File pointer is process-local and updated with each operation

• Behaves like POSIX’s read and write

• Accesses by different processes can lead to conflicts
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Positioning. . . Concepts and Functionality

2. Shared file pointers
• File pointer is global and updated with each operation

• Syntax: MPI_. . . _shared and MPI_. . . _ordered

• Can be used to ensure different processes do not access the same data
• Support can be limited depending on the used file system

3. Explicit offsets
• Offset is specified with each operation

• Behaves like POSIX’s pread and pwrite

• Syntax: MPI_. . . _at

• Concurrent access by multiple processes can be done safely

• Requires calculating the offset manually
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Positioning. . . Concepts and Functionality

• MPI_File_seek and MPI_File_seek_shared set the file pointer
• Both functions support three positioning modes

1. MPI_SEEK_SET: File pointer is set to specified offset
2. MPI_SEEK_CUR: File pointer is incremented by specified offset
3. MPI_SEEK_END: File pointer is set to end of file plus offset

• The offset can also be negative (especially useful for MPI_SEEK_END)
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Shared File Pointers Concepts and Functionality

• Shared file pointers can be used for coordinated access
• All processes use the same global file pointer

• Access conflicts can be avoided like this

• Accesses update the file pointer for all processes

• Can be problematic to implement efficiently
• Requires some form of (distributed) locks

• File pointer can only be updated by one process at a time

• Complicated to scale when using large number of processes

• Changes have to be announced to all other processes

• Shared file pointers are not supported by all file systems

• OrangeFS does not support locks and therefore no shared file pointers
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Shared File Pointers. . . Concepts and Functionality

• MPI_. . . _shared can be used for individual operations
• Operations can be performed in an arbitrary order

• MPI_. . . _ordered can be used for collective operations
• Operations are performed according to the processes’ ranks

• Useful for several use cases
• Shared log file, where all processes append new entries
• Output data to be written to a file in the processes’ order
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Reading and Writing Concepts and Functionality

• MPI_File_read: Reads from file
• fh: File handle
• buf: Buffer to read into
• count: Number of elements
• type: Element type
• status: Read status
• Behaves like read

• MPI_File_write: Writes to file
• fh: File handle
• buf: Buffer to write from
• count: Number of elements
• type: Element type
• status: Write status
• Behaves like write

1 int MPI_File_read (MPI_File fh,

2 void* buf ,

3 int count ,

4 MPI_Datatype type ,

5 MPI_Status* status)

6

7 int MPI_File_write (MPI_File fh,

8 void* buf ,

9 int count ,

10 MPI_Datatype type ,

11 MPI_Status* status)
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Parallel I/O Concepts and Functionality

1 MPI_File fh;

2 MPI_Offset size;

3 MPI_Status status;

4 int nbytes;

5

6 MPI_File_open(MPI_COMM_WORLD , "/tmp/mpi -io",

7 MPI_MODE_RDWR | MPI_MODE_CREATE | MPI_MODE_DELETE_ON_CLOSE ,

8 MPI_INFO_NULL , &fh);

9 MPI_File_write(fh, data , sizeof(data), MPI_BYTE , &status);

10 MPI_Get_count (&status , MPI_BYTE , &nbytes);

11 MPI_File_get_size(fh, &size);

12 MPI_File_close (&fh);

• Basic structure is very similary to POSIX
• Separate call of MPI_Get_count necessary (return value is a 32 bit integer)
• Metadata access is limited to MPI_File_get_size
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Metadata Operations Concepts and Functionality

• MPI-IO only supports a few operations, especially for metadata
• Its interface is more akin to an object store than a file system

• There is no support for directory operations at all
• Full path must be known to open a file

• File management is also very limited
• Files can only be create via MPI_File_open

• Files can be grown and shrunk
• MPI_File_set_size and MPI_File_preallocate

• No support for rich metadata like in POSIX
• No equivalent to stat, files size via MPI_File_get_size
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Non-Contiguous Data Types Concepts and Functionality

• MPI-IO supports non-contiguous data types
• Enables access to complex structures using a single I/O call
• Provides convenience for developers but also potential for optimizations

• Accesses are also possible to do manually
• Would introduce developer and performance overhead
• Similar to readv, writev, aio_read, aio_write and lio_listio

• readv and writev can only access contiguous areas and are thus not as powerful
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Non-Contiguous Data Types. . . Concepts and Functionality

• MPI_Type_vector: Create vector type
• count: Number of blocks
• blocklength: Number of elements in

each block
• stride: Distance between blocks
• old: Old data type
• new: New data type

• Example: 3×3 matrix diagonal

1 int MPI_Type_vector (int count ,

2 int blocklength ,

3 int stride ,

4 MPI_Datatype old ,

5 MPI_Datatype* new)

6

7 MPI_Type_vector (3, 1, 4,

8 MPI_DOUBLE , &newtype);

9 MPI_Type_commit (& newtype);

10 MPI_File_write(fh, buffer ,

11 1, newtype , &status);
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Non-Contiguous Data Types. . . Concepts and Functionality

1 MPI_Type_vector (3, 1, 4, MPI_DOUBLE , &newtype);

1 2 3
4 5 6
7 8 9

• Assumption: Matrix is stored row- or column-wise in memory
• A 3×3 matrix has three diagonal elements
• Each diagonal element is a double value
• Diagonal elements are separated by three elements (have a distance of four)
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Collective Operations Concepts and Functionality

• MPI-IO supports collective I/O for improved performance
• All proceses perform their access at the same time in a coordinated fashion

• Syntax: MPI_. . . _all

• Collective operations provide additional information for potential optimizations

• Individual operations can result in random access patterns

• Example: Small non-contiguous accesses
• Each processes accesses several small areas within the file
• All processes together access the whole file

File Type (Rank 0)

…Structure

File Type (Rank 1)

File Type (Rank 2)
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Non-Blocking Operations Concepts and Functionality

• MPI-IO also supports non-blocking I/O operations
• Work similar to non-blocking communication operations

• Syntax: MPI_. . . _i. . .

• Allows overlapping I/O and computation (and more)

• Enables applications to be productive while performing I/O
• Speedup is limited to 2 with only I/O and computation

• Status can be checked using standard MPI functions
• For example, MPI_Wait and MPI_Test
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Non-Blocking Operations. . . Concepts and Functionality

• Non-blocking collective I/O operations are called split collectives
• Separated due to optimization and implementation reasons

• Syntax: MPI_. . . _begin and MPI_. . . _end

• Split collectives have several limitations
• Per process and file only one split collective is allowed at a time
• Cannot be combined with regular collective operations
• No collective I/O operations are allowed while a split collective is in progress
• Implementations are allowed to perform blocking operations internally
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Quiz Concepts and Functionality

• What happens if the buffer of a non-blocking operation is reused before the
operation is finished?

1. MPI will finish the non-blocking operation first
2. MPI will abort the application
3. MPI will crash
4. Undefined behavior
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Hints Concepts and Functionality

• Hints can be used to provide implementations with additional information
• Typically used for optimizations
• Can be specified for MPI_File_open and others

• Examples:
• Number of devices a file should be distributed across
• Size used for distributing blocks
• Information about the data layout

• Hints are optional and do not have to be specified
• Implementations are also free to ignore hints as they see fit
• Some implementations allow specifying hints via environment variables

Michael Kuhn MPI-IO 35 / 48



Data Representations Concepts and Functionality

• MPI-IO supports multiple data representations
• Data portability is an important aspect of MPI-IO
• Often also handled by I/O libraries based upon MPI-IO

• Three possible representations
• native: Data is not converted in any way and are stored as in memory
• internal: Portable data representation across all platforms supported by used

implementation
• external32: Portable data representation across all platforms and implementations,

potential loss of precision and performance

• Users can also define their own data representations
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General Performance Considerations

• Achievable performance depends on the used operations
• Large accesses are typically more efficient than small ones
• Contiguous accesses are usually better than non-contiguous ones

• MPI-IO offers several possibilities of performing I/O
• Contiguous vs. non-contiguous, individual vs. collective

• Example with a 3×3 matrix:
• Matrix is stored row-wise in memory
• Matrix should be read by three processes
• Each process is responsible for one column
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Level 0: Individual Contiguous Accesses Performance Considerations

• Each process performs individual accesses

• One row is read per iteration

• Contiguous region is read in each iteration

• Individual accesses lead to random pattern

1 for (i = 0; i < 3; i++)

2 {

3 MPI_File_seek(fh, ...);

4 MPI_File_read(fh, ...,

5 1, MPI_DOUBLE , ...);

6 }
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Level 1: Collective Contiguous Accesses Performance Considerations

• Processes perform coordinated collective access

• One row is read per iteration

• Contiguous region is read in each iteration

• Collective access leads to contiguous pattern

1 for (i = 0; i < 3; i++)

2 {

3 MPI_File_seek(fh, ...);

4 MPI_File_read_all(fh, ...,

5 1, MPI_DOUBLE , ...);

6 }
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Level 2: Individual Non-Contiguous Accesses Performance Considerations

• Each process performs individual accesses

• All columns are read

• Non-contiguous column is read by each process

• Individual accesses lead to random pattern

1 MPI_Type_vector (3, 1, 3,

2 MPI_DOUBLE , &newtype);

3 MPI_Type_commit (& newtype);

4

5 MPI_File_seek(fh, ...);

6 MPI_File_read(fh, ...,

7 1, newtype , ...);
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Level 3: Collective Non-Contiguous Accesses Performance Considerations

• Processes perform coordinated collective access

• All columns are read

• Non-contiguous column is read by each process

• Collective access leads to contiguous pattern

1 MPI_Type_vector (3, 1, 3,

2 MPI_DOUBLE , &newtype);

3 MPI_Type_commit (& newtype);

4

5 MPI_File_seek(fh, ...);

6 MPI_File_read_all(fh, ...,

7 1, newtype , ...);
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MPI-IO Levels [Thakur et al., 2002] Performance Considerations

Processes
    P0      P1      P2

File
Level 0
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MPI-IO Levels [Thakur et al., 2002] Performance Considerations

Processes
    P0      P1      P2

File

Level 1

Level 0
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MPI-IO Levels [Thakur et al., 2002] Performance Considerations

Processes
    P0      P1      P2

File

Level 2

Level 1

Level 0
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MPI-IO Levels [Thakur et al., 2002] Performance Considerations

Processes
    P0      P1      P2

File

Level 3

Level 2

Level 1

Level 0
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Semantics Performance Considerations

• Reminder: POSIX has strict consistency and coherence requirements
• Changes have to be visible globally after a write

• I/O should be performed atomically
• Requirements are relatively easy to support locally

• Efficient parallel I/O is complicated by POSIX semantics
• Data cannot be cached as effectively due to synchronization
• Atomicity might require distributed locks
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Semantics. . . Performance Considerations

• MPI-IO has less strict requirements than POSIX
• Changes only have to be visible to the current process
• Non-overlapping or non-concurrent operations are handled correctly

• Changes do not have to be visible globally immediately after an operation
• Allows reducing locking overhead and increasing scalability

• MPI-IO semantics is enough for most scientific applications
• For example, non-overlapping accesses to computed data are common
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Synchronization Performance Considerations

1. Sync transfers changes to the file system

2. Barrier synchronizes all processes

• Necessary for correct synchronization
• First sync has to be finished for all processes

before second sync is called

3. Sync makes changes visible to all processes

1 MPI_File_sync(fh);

2 MPI_Barrier(MPI_COMM_WORLD);

3 MPI_File_sync(fh);
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Synchronization. . . Performance Considerations

• MPI-IO’s atomic mode guarantees sequential consistency
• Has to be enabled explicitly using MPI_File_set_atomicity

• Allows MPI-IO to handle overlapping and concurrent accesses correctly
• Similar to stricter POSIX semantics

• Support depends on file system and is limited
• ROMIO supports atomic mode, OMPIO does not
• Typically requires distributed locks

• Not all file systems implement locks, limiting availability
• Reminder: OrangeFS does not support locks
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Summary Summary

Positioning Blocking Individual Collective

Explicit Offset

Blocking
read_at read_at_all

write_at write_at_all

Non-Blocking and
Split Collective

iread_at read_at_all_begin

read_at_all_end

iwrite_at write_at_all_begin

write_at_all_end

Individual File
Pointers

Blocking
read read_all

write write_all

Non-Blocking and
Split Collective

iread read_all_begin

read_all_end

iwrite write_all_begin

write_all_end

Shared File
Pointer

Blocking
read_shared read_ordered

write_shared write_ordered

Non-Blocking and
Split Collective

iread_shared read_ordered_begin

read_ordered_end

iwrite_shared write_ordered_begin

write_ordered_end
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Summary. . . Summary

• MPI-IO is defined similar to MPI’s communication operations
• Supports collectives, derived data types etc.

• Files are a collection of typed elements
• Each process has its own file view
• Multiple data representations enable portability

• Positioning can be performed using different modes
• Explicitly, with individual file pointers or a shared file pointer

• Different access modes allow optimizing parallel I/O
• Non-contiguous, collective and non-blocking operations can improve performance
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