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Libraries Review

• What is the main feature of SIONlib?
1. Self-describing data format
2. Optimized mapping and alignment
3. Convenient I/O interface
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Libraries Review

• What is chunking in HDF5 used for?
1. Aligning accesses to file system stripes
2. Allow features such as compression
3. Enable multiple unlimited dimensions
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Libraries Review

• Why is alignment important for performance?
1. Prevent unnecessary communication with servers
2. Prevent access and locking conflicts
3. Prevent read-modify-write operations
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Introduction Introduction

• Parallel I/O is much more complex than serial I/O
• Parallel distributed file systems introduce additional complexity
• Access is often done via layered libraries
• Communicating via the network causes additional latency

• Complexity often has an impact on performance
• Parallel distributed file systems are necessary for high performance
• Libraries are necessary for convenient use by applications

• MPI-IO, HDF, NetCDF etc.

• Complex interactions and optimizations on all layers
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Introduction. . . Introduction

• There are several ways to improve performance
• Some are controlled by the storage system, some by the user
• Hybrid approaches require information from the user

• Advantages and disadvantages
• System optimizations are independent of user knowledge

• No additional complexity for users
• Missing information also limits achievable performance

• Additional information is often necessary for significant improvements

• For example, stripe size in parallel distributed file systems
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Caching Basics

• Caching forms the basis for other optimizations
• For example, aggregation and scheduling require caching of some form

• Server-side caching is relatively unproblematic
• Cache exists at a central location, no consistency problems
• Data can be lost when the server crashes

• Client-side caches are more problematic but also more promising
• Data is first collected in RAM and then sent to the servers

• Allows merging multiple network messages into one

• Potentially allows reducing the amount of data to send

• Data might be overwritten and only the final state has to be sent

• Client-side caching is often prevented by the environment
• POSIX specifies that changes have to be visible globally
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Caching. . . Basics

• Read operations should be satisfied from the cache
• Especially interesting when combined with read ahead
• Allows hiding latency introduced by the network and storage devices

• Write operations can be handled by the local cache
1. Data is first written to the cache and later flushed to device (“write-behind”)

• Can be done for access patterns without conflicts
• Example: Non-overlapping write-only access patterns

2. Data is written to the cache and the device at the same time (“write-through”)

• Caching might also require multi-threading
• One thread is often not enough to achieve maximum performance
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Quiz Basics

• Which caching mode would you use when data safety is important?
1. Write-behind
2. Write-through
3. No caching
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Caching. . . Basics

• Caching increases the chances for conflicts
• Concurrent access by multiple clients can overlap
• Outdated data leads to coherence and consistency problems

• Still useful for a number of scenarios
• Server-side caching almost always makes sense
• Whenever no or only a few conflicts can occur

• Home directories are only accessed by the owning user
• Process-local files are only accessed by the owning process

• We will take a look at burst buffers later
• Additional cache level to accelerate the file system
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Scheduling Basics

• Scheduling allows reordering I/O operations to improve performance
• Requires caching to work in a reasonable way
• Often performed as a preliminary stage for aggregation

• Reordering I/O requests can help devices
• HDDs have different access latencies depending on the head position

• Seek time (4–15 ms) and rotational latency (2–7 ms) are relevant

• Scheduling can also make sense for SSDs

• For instance, allowing parallel access to multiple flash cells

• Seeking is an expensive operation for many storage devices

• Linux supports several low-level I/O schedulers
• Among others, cfq, deadline and noop
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Scheduling. . . [helix84, 2007] Basics
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• Native Command Queueing (NCQ) is a popular example for scheduling
• Changing the order of operations allows improving operation throughput
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Aggregation Basics

• Aggregation merges multiple I/O operations to improve performance
• Can also form the basis for more advanced optimizations
• Requires caching to able to access operations to merge

• Individual operations cannot be optimized meaningfully
• “Write 100 bytes at offset 2342”

• Additional context enables further optimizations
• “Write 100 bytes each at offets 2342, 2442 and 2542”
• Operation order can be problematic from a performance point of view
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Aggregation. . . Basics

• Aggregation is especially useful for small operations
• Large operations are usually faster

• Reduces seek times and read-modify-write overhead

• Can be combined with reordering done by scheduling

• Merging can provide benefits by its own
• Fewer I/O operations correspond to fewer system calls

• Mode/context switches have constant overhead
• Aggregation must be performed in user space

• Aggregation is widely used, like scheduling
• Almost all of Linux’s I/O schedulers aggregate operations

• Even noop performs aggregation
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Replication Basics

• Replication stores data redundantly at several locations
• Also allows storing data closer to the user (for example, for clouds/grids)

• Can be used to implement load balancing
• Large numbers of accesses can be distributed across multiple replicas

• Problematic when data has to be modified
• Data must be updated at all locations and could lead to inconsistencies
• Degrades write performance if users have to wait for updates to finish

• Most useful if data is accessed mostly for reading
• If files are read-only, there are no disadvantages (except for storage overhead)
• Most often used in big data and cloud contexts, increasingly also in HPC
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Metadata Basics

• Metadata operations are critical for overall performance
• Data can only be accessed when metadata has been found

• Example: POSIX time stamp for last access (atime)
• Executing file * in a directory with millions of files

• Updates the time stamp for all files
• Moreover, first few bytes of each file have to be read

• Problem can be worked around
• no[dir]atime, relatime, strictatime und lazytime

• Alternatively, specify O_NOATIME when using open

“It’s also perhaps the most stupid Unix design idea of all times. [. . . ] ‘For every file that is read from the disk,

let’s do a ... write to the disk! And, for every file that is already cached and which we read from the cache ...

do a write to the disk!’” – Ingo Molnar
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Metadata. . . Basics

• Metadata operations often depend on each other
• Makes concurrent execution problematic
• Examples: Path resolution, creating a file etc.

• There is a multitude of approaches to improve metadata performance
• Aggregating metadata operations

• Compound operations

• Reducing the amount of metadata operations

• Relaxed semantics

• Intelligently distribute metadata load

• Dynamic metadata management
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Example: Cooperative Caching [Liao et al., 2005] System-Guided Optimizations

• Global cache that is available on all nodes
• Potentially huge capacity of several terabytes or even petabytes
• Improves latency and throughput when accessing files

• Data is read from the main memory of a specific client
• Typically faster than reading data from the file system
• In the best case, data is available in the local main memory

• Data is also written to main memory
• Data is then flushed to the file system in the background
• Safety measures to ensure that data cannot be lost
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Example: Cooperative Caching. . . [Liao et al., 2005] System-Guided Optimizations

• Data is lost if a client node crashes
• Can be prevented using redundancy or frequently writing data back to storage
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Example: Cooperative Caching. . . [Liao et al., 2005] System-Guided Optimizations
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Example: Cooperative Caching. . . [Liao et al., 2005] System-Guided Optimizations

• Moves load from the file system to the application
• Additional cache level for data

• Advantages
• File system is eliminated as the bottleneck
• Mapping is static and does not require further coordination
• Communication throughput is typically higher than I/O throughput

• Disadvantages
• Main memory capacity is decreased due to caching
• Data throughput is limited by responsible client
• Can have negative influence on application performance
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Example: ZFS Scheduling [Chad Mynhier, 2006] System-Guided Optimizations

• ZFS assigns a priority and a deadline to each I/O operation
• A higher priority implies a shorter deadline

• Read operations generally receive a higher priority than write operations
• Reads are more important for the (perceived) latency
• Write operations can be buffered in a cache
• Read operations usually have to access the storage device

• Large data sets cannot be cached in their entirety

• Linux’s deadline scheduler works similarly
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Example: ZFS Scheduling. . . [Chad Mynhier, 2006] System-Guided Optimizations

• Reads are faster on ZFS with load
• No difference without load
• Important for system’s interactivity

• Write operations take longer
• Writes can be cached more easily

File System Without Load With Load
ZFS 0:09 0:10
ext3 0:09 5:27
reiserfs 0:09 3:50

512 MB file with moderate load

File System Without Load With Load
ZFS 0:32 0:36
UFS 0:50 5:50
ext3 0:36 54:21
reiserfs 0:33 69:45

2 GB file with high load
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Example: hashFS [Lensing et al., 2013] System-Guided Optimizations

• Reminder: Path resolution is sequential and causes significant overhead
• Many small metadata accesses for all path components

• Hashing allows direct access to metadata and data
• Use full path to determine hash
• Reduces amount of accesses to one read operation per file
• Permissions of parent components have to be taken into account

• Problem: Renaming a parent changes hashes of all children
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Quiz System-Guided Optimizations

• How would you handle renames?

1. Hash are recomputed immediately

• Depending on number of files, high overhead

2. Renames are stored in a mapping table

• Table accesses cause additional overhead
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Example: Dynamic Metadata Mgmt [Weil et al., 2004] System-Guided Optimizations

• Metadata is typically distributed statically based on a hash
• Dynamic metadata management uses responsibility for subtrees

• Metadata management is distributed dynamically based on load
• Metadata servers are responsible for one or more file system subtrees
• Responsibilities can be changed at runtime

• Clients do not have a-priori knowledge about responsible servers
• Clients ask a random server for metadata
• Servers forward requests if necessary
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Example: Dynamic Metadata Mgmt. . . [Weil et al., 2004] System-Guided Optimizations

• Trees are split up and distributed at runtime
• Allows adapting metadata management to current load situation

• Metadata can also be replicated when necessary
• Replication is triggered when metadata is accessed often
• Replicas are stored on different servers

• Advantages
• Can be used to distribute load more evenly

• Disadvantages
• Requires more communication and adds communication between servers
• Increases latency for first file access
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Example: Dynamic Metadata Mgmt. . . [Weil et al., 2004] System-Guided Optimizations

• Static distribution can cause single
server to become overwhelmed

• For instance, many clients creating
files in a shared directory

• Static distribution stays unbalanced
• Clients would have to adapt

• Dynamic distribution adapts to load
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Example: Dynamic Metadata Mgmt. . . [Weil et al., 2004] System-Guided Optimizations

• Responsibility is moved due to load
• Leads to more forwarded requests

• Static distribution has less overhead
• Performance is still lower
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Example: Dynamic Metadata Mgmt. . . [Weil et al., 2004] System-Guided Optimizations

• Popular file can overwhelm server
• All requests forwarded to one

server, which responds slowly

• Replication distributes load
• Requests forwarded to all of

them, higher performance
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Non-Contiguous I/O User-Guided Optimizations

• Traditionally, only contiguous regions can be read/written
• Native support for non-contiguous I/O in MPI-IO
• POSIX does not offer native support for this

• Can be imagined as I/O operations with holes
• Similar to sparse files, which also contain holes
• For instance, users can read/write a matrix diagonal with one operation

• Offers the foundation for a number of high-level optimizations
• In combination with collective I/O, further optimizations are possible

Process 1
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Non-Contiguous I/O. . . User-Guided Optimizations

• Individual contiguous parts still have to be accessed separately
• Storage devices only offer block-based access
• Many small accesses can have a negative impact on performance

• Goal: Aggregate accesses so they become contiguous

• Two main approaches in MPI-IO
1. Read or write contiguous blocks

• Might potentially contain more data than required
• This optimization is called data sieving

2. Combine multiple non-contiguous I/O operations

• The aggregation might result in a large contiguous access
• This is especially interesting in combination with collective I/O
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Data Sieving User-Guided Optimizations

• Data sieving is an optimization for non-contiguous I/O
• Implemented and used by default in ROMIO

• Turn non-contiguous accesses into contiguous ones for the storage devices
• Often faster than performing many small accesses and skipping the holes

• This also applies to non-rotational storage devices such as SSDs

• Unnecessary data is discarded
• Not always worth it, therefore necessary to estimate costs
• Estimation especially complex in parallel distributed file systems

Process 1
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Quiz User-Guided Optimizations

• Which additional problems are present in parallel distributed file systems?
1. Clients could communicate with more servers than necessary
2. File systems do not support non-contiguous I/O, which is necessary
3. Data sieving requires read-modify-write in parallel distributed file systems
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Data Sieving. . . User-Guided Optimizations

• Data sieving can lead to access conflicts
• Reading is relatively unproblematic

• Writing can cause more problems
• Old data has to be read first to fill the holes
• Read-modify-write causes overhead

• Both reading and writing can negatively affect performance
• Logically contiguous ≠ physically contiguous

• File system allocation, sector remapping, distribution etc.

• Might lead to more communication with servers than necessary

Process 1
Server
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Collective I/O User-Guided Optimizations

• Clients perform I/O operations in a coordinated fashion
• Individual accesses are uncoordinated and therefore random

• Operations can be scheduled and aggregated more effectively
• Non-contiguous accesses by multiple clients can be merged

Process 1
Process 2

• Non-collective operations could lead to accesses of process 2 executing first
• Looks like random accesses to the file system
• Causes non-contiguous accesses not to be aggregated
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Two Phase [Thakur et al., 1999] User-Guided Optimizations

• Two Phase is an optimization for collective I/O
• An implementation of the general idea is included in ROMIO

• Idea: Clients coordinate independently of the file system
• Clients are responsible for contiguous blocks
• Blocks are disjoint and contain all requested data

• Leads to a 1-to-1 communication in the best case
• Usually, one client has to contact multiple servers
• Helps reduce the network and storage device overhead

• Additional communication overhead is introduced and can be detrimental
• Worst case: All data is being sent a second time
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Two Phase. . . [Thakur et al., 1999] User-Guided Optimizations
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Asynchronous I/O User-Guided Optimizations

• Asynchronous I/O allows overlapping I/O with computation, communication etc.
• Only works if there is enough concurrent work to do
• Buffer cannot be accessed while the asynchronous is pending

• Removes implicit synchronization from parallel applications
• Requires special asynchronous I/O functions

• For instance, MPI_File_iwrite and aio_write

• Progress can be checked with separate functions

• For example, MPI_test and aio_return

• Has the potential to introduce race conditions
• Data can only be changed when I/O is finished
• Buffering the I/O can help work around the problem
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Asynchronous I/O. . . User-Guided Optimizations

• Use case: Results are written out after computation has finished
• Traditionally, operation blocks until data has been written

Computation ComputationInput/Output Input/Output

• Asynchronous I/O allows progressing I/O concurrently
• Only possible if computation does not change the data buffer

Computation Computation

Input/OutputInput/Output

• Limitation: The maximum speedup of this approach is 2
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Hints User-Guided Optimizations

• Users should provide as much information as possible for optimizations
• Allows the file system and libraries to optimize accesses

• Hints are typically optional
• That is, users do not have to specify them for correct operation
• However, the system is also free to ignore them

• Hints can be used to tune a wide range of optimizations
• Information about access modes: read-only, read-mostly, append-only, non-contiguous

access, unique, sequential etc.
• Adapting buffer sizes
• Modifying the number of processes involved in I/O (such as Two Phase)
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Relaxed Semantics User-Guided Optimizations

• Adapting the semantics to application requirements
• Data: Do not make modifications visible immediately
• Metadata: Do not store all metadata (for instance, timestamps)

• Users need a way to be able to specify requirements
• Users typically know best how their applications behave
• File systems and libraries usually do not have support for this

• There is typically only support for one static semantics
• Static semantics is suitable for some use cases but never for all
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Relaxed Semantics. . . User-Guided Optimizations

• Research topic: Give users ability to control semantics
• For example, two modes for safety and performance

• Use different locking mechanisms depending on the use case
• That is, no or very limited locking in performance mode

• Data safety can also be tuned for performance
• That is, no redundancy and synchronization in performance mode

• Coherence and consistency requirements also differ
• That is, allow extensive caching in performance mode

• Performance mode could be used for process-local temporary files
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Best Practices Summary

• Access data sequentially if possible (not serially!)
• More efficient than small accesses here and there
• Still relevant even with non-rotational storage devices

• Avoid seek operations as much as possible
• Head movements in an HDD are very slow
• Communication with different servers causes overhead

• Prevent many small accesses whenever possible
• Few large accesses, like with message passing
• I/O suffers from network and storage device latencies
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Best Practices. . . Summary

• Check behavior of I/O functions that are used
• For instance, which functions are synchronous and which are collective

• Access patterns are an important aspect for overall performance
• File systems and libraries can compensate in some cases
• Inefficient applications will still not perform optimally
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Summary Summary

• There is a wide range of different I/O optimizations
• Optimizations are typically performed on all layers of the stack
• Different workarounds and optimizations can conflict
• Basic optimizations like caching, scheduling etc. provide the basis

• Achievable performance heavily depends on the application and user
• Provide as much information as possible, including access patterns, modes etc.
• I/O interfaces often provide facilities to do so and can optimize more effectively

• User should also perform optimizations manually if possible
• Improve access patterns, make use of asynchronous I/O etc.
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