Data Reduction

Parallel Storage Systems 2023-07-03

Prof. Dr. Michael Kuhn michael.kuhn@ovgu.de

Parallel Computing and I/O Institute for Intelligent Cooperating Systems Faculty of Computer Science Otto von Guericke University Magdeburg https://parcio.ovgu.de

Outline

Data Reduction

Review

Motivation

Recomputation

Deduplication

Compression

Advanced Compression

- Why is it important to repeat measurements?
 - 1. Warm up the file system cache
 - 2. Randomize experiments for statistical purposes
 - 3. Eliminate systematic errors
 - 4. Eliminate random errors

- What does the queue depth for asynchronous operations refer to?
 - 1. Size of the operations
 - 2. Number of operations in flight
 - 3. Maximum size of an operation

- What is a context switch?
 - 1. The application switches between two open files
 - 2. The application switches between two I/O operations
 - 3. The operating system switches between two processes
 - 4. The operating system switches between two file systems

- Which is the fastest I/O setup in terms of potential throughput?
 - 1. One client communicating with one server
 - 2. One client communicating with ten servers
 - 3. Ten clients communicating with one server
 - 4. Ten clients communicating with ten servers

Outline

Data Reduction

Review

Motivation

Recomputation

Deduplication

Compression

Advanced Compression

- · Hardware improves exponentially, but at different rates
 - Storage capacity and throughput are lagging behind computation
 - · Network and memory throughput are even further behind
- · Transferring and storing data has become a very costly
 - Data can be produced even more rapidly
 - · Often impossible to keep all of the data indefinitely
- Consequence: Higher investment costs for storage hardware
 - · Leads to less money being available for computation
 - Alternatively, systems have to become more expensive overall
- Storage hardware can be a significant part of total cost of ownership (TCO)
 - Approximately 20 % of total costs at DKRZ, \approx € 6,000,000 procurement costs

Performance Development...

- Computation: 300× every ten years (based on TOP500)
- Storage capacity: 100× every 10 years
- Storage throughput: 20× every 10 years

Data Reduction

Motivation

	2009	2015	Factor
Performance	150 TF/s	3 PF/s	20x
Node Count	264	2,500	9.5x
Node Performance	0.6 TF/s	1.2 TF/s	2x
Main Memory	20 TB	170 TB	8.5x
Storage Capacity	5.6 PB	45 PB	8x
Storage Throughput	30 GB/s	400 GB/s	13.3x
HDD Count	7,200	8,500	1.2x
Archive Capacity	53 PB	335 PB	6.3x
Archive Throughput	9.6 GB/s	21 GB/s	2.2x
Energy Consumption	1.6 MW	1.4 MW	0.9x
Procurement Costs	30 M€	30 M€	1x

	2020	2025	Exascale (2020)
Performance	60 PF/s	1.2 EF/s	1 EF/s
Node Count	12,500	31,250	100k-1M
Node Performance	4.8 TF/s	38.4 TF/s	1–15 TF/s
Main Memory	1.5 PB	12.8 PB	3.6-300 PB
Storage Capacity	270 PB	1.6 EB	0.15-18 EB
Storage Throughput	2.5 TB/s	15 TB/s	20-300 TB/s
HDD Count	10,000	12,000	100k-1M
Archive Capacity	1.3 EB	5.4 EB	7.2-600 EB
Archive Throughput	57 GB/s	128 GB/s	-
Energy Consumption	1.4 MW	1.4 MW	20-70 MW
Procurement Costs	30 M€	30 M€	200 M\$

- There are different concepts to reduce the amount data to store
 - · We will take a closer look at three in particular
- 1. Recomputing results instead of storing them
 - · Not all results are stored explicitly but recomputed on demand
- 2. Deduplication to reduce redundancies
 - Identical blocks of data are only stored once
- 3. Compression
 - Data can be compressed within the application, the middleware or the file system

Outline

Data Reduction

Review

Motivation

Recomputation

Deduplication

Compression

Advanced Compression

- Do not store all produced data
 - Data will be analyzed in-situ, that is, at runtime
- · Requires a careful definition of the analyses
 - Post-mortem data analysis is impossible
 - A new analysis requires repeated computation
- Recomputation can be attractive
 - If the costs for keeping data are substantially higher than recomputation costs
- · Cost of computation is often still higher than the cost for archiving the data
 - Computational power continues to improve faster than storage technology

- How would you archive your application to be executed in five years?
 - 1. Keep the binaries and rerun it
 - 2. Keep the source code and recompile it
 - 3. Put it into a container/virtual machine

- Keep binaries of applications and all their dependencies
 - Containers and virtual machines have made this much easier
- · Effectively impossible to execute the application on differing future architectures
 - x86-64 vs. POWER, big endian vs. little endian
 - Emulation usually has significant performance impacts
- Recomputation on the same supercomputer appears feasible
 - · Keep all dependencies (versioned modules) and link statically

- · All components can be compiled even on different hardware architectures
 - · Most likely will require additional effort from developers
 - · Different operating systems, compilers etc. could be incompatible
 - Might still require preserving all dependencies
- · Changes to minute details could lead to differing results
 - Different processors, network technologies etc. could change results
 - · Can be ignored in some cases as long as results are "statistically equal"

- Recomputation can be worth it given current performance developments
 - Computation is developing much faster than storage
- Reproducibility is relevant in general, not only for saving space
 - · It should be possible to reproduce results independently
- · Requires a careful definition of all experiments
 - Experiment cannot be adapted after the fact
- · All input data has to be kept around for later executions

Outline

Data Reduction

Review

Motivation

Recomputation

Deduplication

Compression

Advanced Compression

- Data is split up into blocks (4-16 KB)
 - Different chunking methods can be used (static or content-defined)
- · Each unique block of data is stored only once
 - A reference to the original block is created for each repeated occurrence
- Previous study for HPC data showed 20-30 % savings
 - Total amount of more than 1 PB
 - Full-file deduplication 5-10 %
- · Deduplication also has its drawbacks
 - · Deduplication tables have to be kept in main memory
 - Per 1 TB of data, approximately 5-20 GB for deduplication tables

- · Deduplication tables store references between the hashes and data blocks
 - SHA256 hash function (256 bits = 32 bytes)
 - 8 KB file system blocks (using 8 byte offsets)
 - Additional data structure overhead of 8 bytes per hash
- Have to be kept in main memory for efficient online deduplication
 - · Potential duplicates have to be looked up for each write operation
 - · Fast storage devices such as SSDs are still orders of magnitude slower
 - NVRAM might be suitable in the future

 $1 \text{ TB} \div 8 \text{ KB} = 125,000,000$ $125,000,000 \cdot (32 \text{ B} + 8 \text{ B} + 8 \text{ B}) = 6 \text{ GB} \quad (0, 6 \%)$

	2009	2015	2020	2025
Storage	5.6+ 1.68 PB	45+ 13.5 PB	270+ 81 PB	1.6+ 0.48 EB
RAM	20+ 33.6 TB	170+ 270 TB	1.5+ 1.62 PB	12.8+ 9.6 PB
Power	1.6+ 0.24 MW	1.4+ 0.20 MW	1.4+ 0.14 MW	1.4+ 0.09 MW
Costs	30+ 2.52 M€	30+ 2.38 M€	30+ 1.62 M€	30+ 1.13 M€

- Assumption: Optimistic savings of 30 %
- Deduplication is not suitable in an HPC context
 - Requires more additional RAM than available for computation (except for 2025)
 - Requires significantly more power (5-15 %)
 - Increases overall costs (3-8 %)

2009	2015	2020	2025
4.3+ 1.3 PB	34.6+ 10.4 PB	207.7+ 62.3 PB	1.2+ 0.4 EB
20+ 25.8 TB	170+ 207.7 TB	1.5+ 1.2 PB	12.8+ 7.4 PB
1.54+ 0.19 MW	1.34+ 0.15 MW	1.34+ 0.1 MW	1.34+ 0.07 MW
28.27+ 1.94 M€	28.27+ 1.83 M€	28.27+ 1.25 M€	28.27+ 0.87 M€

- · Assumption: Use deduplication to achieve same capacity
- · Overhead is now more balanced
 - Still requires significantly more main memory
 - Power consumption is increased by up to 8 %
 - Overall costs drop starting 2020

- · Larger blocks reduce overhead caused by deduplication tables
 - 8 KB \rightarrow 0.6 %, 16 KB \rightarrow 0.3 %, 32 KB \rightarrow 0.15 %
 - · Larger blocks also have a negative impact on deduplication rate
- Full-file deduplication can be an alternative
 - Storage throughput is not affected negatively
 - · Files have to be written completely before hash can be computed
- · Offline deduplication reduces runtime overhead
 - Relatively easy to implement using modern copy-on-write file systems
 - Especially useful for full-file deduplication
 - Influence on performance is not as dramatic
 - Tables do not have to be kept in main memory all the time

Data Reduction

Review

Motivation

Recomputation

Deduplication

Compression

Advanced Compression

- Goal: Capturing most important performance metrics of compression algorithms
 - · Compression ratio, processor utilization, power consumption and runtime
- $\approx 500~\text{GB}$ of climate data (MPI-OM)
 - · Preliminary tests with repeating and random data
 - Serial tests to determine base performance
 - Parallel tests for real-world applications

Tracing [Chasapis et al., 2014]

- Instrumented installation
 - VampirTrace for applications
 - pmserver for file system servers
 - Server to record power consumption
- Allows correlating client and server activities

• Which algorithm would you use?

- 1. none
- 2. zle
- 3. lzjb
- 4. lz4
- 5. gzip-1
- 6. gzip-9

Algorithm	Ratio	Utilization	Runtime
none	1.00	23.7	1.00
zle	1.13	23.8	1.04
lzjb	1.57	24.8	1.09
lz4	1.52	22.8	1.09
gzip-1	2.04	56.6	1.06
gzip-9	2.08	83.1	13.66

[Chasapis et al., 2014]

- Compress climata data set
- Runtime is increased moderately
 - Except for higher gzip levels
- gzip increases utilization significantly
- 1z4 (and gzip-1) are most interesting

Algorithm	Ratio	Utilization	Runtime
none	1.00	23.7	1.00
zle	1.13	23.8	1.04
lzjb	1.57	24.8	1.09
lz4	1.52	22.8	1.09
gzip-1	2.04	56.6	1.06
gzip-9	2.08	83.1	13.66

- Repeating data
 - Generated using yes
- 1z4 has low utilization
 - Even lower than no compression
- Both algorithms increase runtime

Algorithm	Ratio	Utilization	Runtime
none	1.00	23.7	1.00
lz4	126.96	15.8	1.28
gzip-1	126.96	23.3	1.24

- Random data
 - Generated using frandom module
- gzip-1 increases utilization
 - Almost $3 \times$ of the others
- Almost no effect on runtime
 - Reminder: Serial test on one HDD

Algorithm	Ratio	Utilization	Runtime
none	1.00	23.5	1.00
lz4	1.00	24.1	0.97
gzip-1	1.00	66.1	1.03

- Modified IOR benchmark
 - More realistic write activity
- Application performance unaffected
 - Higher I/O throughput on servers
- Energy consumption lower for 1z4
 - Lower runtime with almost no increase in power consumption
- gzip-1 increases energy by only 1 %

Algorithm	Runtime	Power	Energy
none	1.00	1.00	1.00
lz4	0.92	1.01	0.93
gzip-1	0.92	1.10	1.01

	2009	2015	2020	2025
Storage	5.6+ 2.8 PB	45+ 22.5 PB	270+ 135 PB	1.6+ 0.8 EB
Power	1.6+ 0.025 MW	1.4+ 0.025 MW	1.4+ 0.025 MW	1.4+ 0.025 MW

- Assumption: Compression ratio of 1.5 for 1z4
 - 10 % increase in power consumption (pessimistic)
- Runtime ratio of 1.0, that is, no change
 - · Does not require additional processors for compression

- Compression can increase storage capacity significantly
 - Suitable algorithms have negligible overhead
 - Often not necessary to buy additional hardware
- Low increase in power consumption
 - Overall, still worth it due to capacity increase
- · Application-specific compression can increase ratios significantly
 - Applications can leverage lossy compression
 - Compression ratios of ≥ 10 are possible

Data Reduction

Review

Motivation

Recomputation

Deduplication

Compression

Advanced Compression

- · Compression is already available in some file systems
 - ZFS and btrfs support transparent compression
 - Lustre can make use of ZFS as a local backend
- File systems currently use static approaches for compression
 - Typically one compression algorithm/setting per file system
 - Dynamic approaches can compress data more efficiently
- · Application knowledge can improve compression results
 - · Dynamic approaches also have to guess algorithms and settings
 - Compression hints can be used to influence decisions

- Left: Current status
- Right: Work in progress
 - Compress across full data path
 - Improve network throughput
 - Avoid redundant compression

- Transparent compression in Lustre
 - No application changes necessary
- Additional benefits
 - · Effective network throughput is increased
 - Recompression for archival is possible
- Significant cost savings are possible
 - Shrinking to 50 % is often feasible

- lz4 and lz4fast are good overall
 - zstd is also interesting
 - All three can be tuned using parameters
- · Multiple candidates for archival

Alg.	Comp.	Decomp.	Ratio
lz4fast	2,945 MB/s	6,460 MB/s	1.825
lz4	1,796 MB/s	5,178 MB/s	1.923
lz4hc	258 MB/s	4,333 MB/s	2.000
lzo	380 MB/s	1,938 MB/s	1.887
xz	26 MB/s	97 MB/s	2.632
zlib	95 MB/s	610 MB/s	2.326
zstd	658 MB/s	2,019 MB/s	2.326

Main Memory [Kuhn et al., 2016]

- Compress main memory transparently (using zram)
- Goal: Capacity of 128 GB per node
 - Not possible with 64 GB of main memory (compress 60 GB, leave 4 GB uncompressed)
 - Izo can slow down memory throughput tremendously (< 10 GB/s)

Michael Kuhn

Network [Kuhn et al., 2016]

- zstd reduces throughput for networks with very high throughput (> 54 Gbit/s)
- FDR can be replaced with QDR when using lz4fast (cost reduction of 15%)
 - lz4fast and zstd can increase throughput to 100 Gbit/s and 125 Gbit/s with FDR

Michael Kuhn

- S1: As many servers as necessary for 50 PB (lower costs/throughput)
- S2: 50 servers and as many HDDs as necessary for 50 PB (higher costs/throughput)

Storage... [Kuhn et al., 2016]

- · lz4 and lz4fast do not impact performance negatively
 - Costs are reduced to € 3,500,000 (instead of € 6,000,000)
- zstd decreases throughput by 20 GB/s
 - Costs are reduced by 50 % to € 3,000,000

- Reminder: Compression is typically static
 - ZFS allows setting an algorithm per file system
- Adaptive compression supports multiple modes
 - Performance, archival, energy consumption etc.
- Uses different heuristics to determine compression algorithm
 - · Heuristics are based on file type and cost functions
- All algorithms are tried for the cost function
 - Best algorithm is used for the following operations

Adaptive Compression... [Ehmke, 2015]

- Compressing a mixed file
 - First part is compressible, second part is random
 - ZFS's gzip-1 setting
- Random data increases utilization and power consumption

Adaptive Compression... [Ehmke, 2015]

- Compressing a mixed file
 - First part is compressible, second part is random
 - Adaptive archival mode
- Random data is effectively skipped

Adaptive Compression... [Hirsch, 2017]

Advanced Compression

- lz4 is very fast
- zstd in middle range
- xz suited for archival
- Combine algorithms
 - Allows adapting compression throughput

Michael Kuhn

Advanced Compression

- Selecting algorithms is complex
 - Performance depends on data
 - Currently a manual process
- Similar compression ratios with different energy consumption
 - · See mafisc and zstd for ECOHAM
- · Goal: Intelligent automatic selection
 - · Less overhead for the developer
 - Avoid performance degradation

Adaptive Compression... [Kuhn et al., 2020]

- Analysis of relevant properties
 - Matrix dimensions
 - Size of dimensions
 - Number of elements
 - Size of the data
 - Information about data type
- · Decision component is trained with collected data
 - · Collecting compression ratio, processor utilization, energy consumption etc.
- Decision component chooses algorithm and settings at runtime
 - · Developer does not have to deal with compression anymore

Michael Kuhn

Adaptive Compression... [Kuhn et al., 2020]

Advanced Compression

- Tested using application ECOHAM
- Two use cases
 - 1. Training with known application (eco-1 and eco-2)
 - 2. Training with unknown application (ec-1 and ec-2)
- Automatic selection
 - · Optimal result for known application
 - Slightly increased energy consumption/lower compression ratio for unknown application

Compression algorithm

Michael Kuhn

Data Reduction

40 / 42

Adaptive Compression... [Plehn et al., 2022]

Advanced Compression

- · Neural network trained on data
 - Up until a certain timestep
 - · Good results also for short durations
- Inferencing at application runtime
 - · Can be integrated into an HDF5 filter
- · Best choices vary within application
 - Ranks behave differently
 - Changes over time
- 14.5 GB reduced to 10.0 GB
 - Ideal compression only $0.14\,\%$ better

Data Reduction

Review

Motivation

Recomputation

Deduplication

Compression

Advanced Compression

- Data reduction techniques can be very useful even in HPC contexts
 - · Recomputation, deduplication and compression have different strengths
 - · Performance and cost impact have to be analyzed carefully
 - · Cost models and measurements can be combined to get a clear picture
- Compression can be leveraged relatively easily
 - Several algorithms offer high performance with little overhead
 - · Data reduction should be performed in the most useful layer
- Computation and storage will likely continue developing at different rates
 - Storage capacity and throughput limitations will only get worse

References

- [Chasapis et al., 2014] Chasapis, K., Dolz, M., Kuhn, M., and Ludwig, T. (2014). Evaluating Power-Performace Benefits of Data Compression in HPC Storage Servers. In Fries, S. and Dini, P., editors, *IARIA Conference*, pages 29–34. IARIA XPS Press.
- [Ehmke, 2015] Ehmke, F. (2015). Adaptive Compression for the Zettabyte File System. Master's thesis, Universität Hamburg.
- [Hirsch, 2017] Hirsch, J. (2017). Dynamic decision-making for efficient compression in parallel distributed file systems. Master's thesis, Universität Hamburg.
- [Kuhn et al., 2016] Kuhn, M., Kunkel, J. M., and Ludwig, T. (2016). Data Compression for Climate Data. Supercomput. Front. Innov., 3(1):75–94.

References ...

[Kuhn et al., 2020] Kuhn, M., Plehn, J., Alforov, Y., and Ludwig, T. (2020). Improving Energy Efficiency of Scientific Data Compression with Decision Trees. In ENERGY 2020: The Tenth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies, pages 17–23. IARIA XPS Press.

[Kunkel et al., 2014] Kunkel, J. M., Kuhn, M., and Ludwig, T. (2014). Exascale Storage Systems -An Analytical Study of Expenses. *Supercomput. Front. Innov.*, 1(1):116–134.

[Plehn et al., 2022] Plehn, J., Fuchs, A., Kuhn, M., Lüttgau, J., and Ludwig, T. (2022). Data-aware Compression for HPC Using Machine Learning. In Kuhn, M., Duwe, K., Acquaviva, J., Chasapis, K., and Boukhobza, J., editors, CHEOPS@EuroSys 2022: Proceedings of the Workshop on Challenges and Opportunities of Efficient and Performant Storage Systems, Rennes, France, 5 April 2022, pages 8–15. ACM.