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Abstract

The B𝜀-tree storage stack is a library built upon the B𝜀-tree data structure, which manages block
devices directly to o�er a key-value interface to embedding Rust and C applications. In order to
exceed its size limitations, a higher-level object abstraction is built on top of the key-value store
bymeans of splitting into �xed-size chunks. It o�ers a convenient andmisuse-resistant interface,
as well as support for user-provided metadata. In addition to a command-line management and
analysis tool, the object store functionality is integrated into the JULEA storage framework as
a new object backend.

Given the varying performance properties and costs of modern storage devices, an advanced
system has the potential of partially realising the bene�ts of more expensive homogeneous
storage by combining di�erent types and utilising each to their strengths. Two approaches of
combining di�erent storage devices into a tiered storage system are explored and implemented.
Under the assumption that the user is aware of an object’s underlying structure, the selected
approach allows for a user-speci�ed prioritisation of object parts. The evaluation results
suggest that correct prioritisation can lead to performance gains when the access patterns
conform to the object prioritisation, and incurs negligible performance cost when operated
with a homogeneous storage pool.
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Chapter 1.

Introduction

Data storage remains an essential part ofmany computational tasks, including high-performance
computing such as weather prediction [Smart et al., 2019], or web services with large amounts
of user-provided content like social networks [Beaver et al., 2010].

Object stores have recently risen in popularity as a storage abstraction supporting the storage
of large values under arbitrary names. Due to fewer interdependencies and relaxed guarantees
relative to �lesystems, object storage systems enjoy greater implementation �exibility, especially
in the context of e�cient distributed storage. The wide availability of cost-e�cient public cloud
o�erings established the niche of object storage for large read-mostly data storage.

A promising approach to the challenges of modern storage technology has been explored with
the B𝜀-tree storage stack [Wiedemann, 2018], introducing a key-value store implemented in
terms of a write-optimised data structure, the eponymous B𝜀-tree. Although its key-value
interface permits small values, it falls short in the presence of larger inputs. In order to support
a wider variety of usecases, an extension of the B𝜀-tree storage stack towards an object store is
desirable, as user and application data is frequently of an unknown or unpredictable size.

The landscape of modern storage devices exhibits a vast contrast in throughput, access latencies,
and cost e�ciency: common hard-disk drives (HDDs) are appreciated for their traditionally
low price-performance ratio, but are also characterised by slow read/write speeds and long
access latencies when compared to modern solid-state disks (SSDs).

Some access patterns change over time, e.g. that of a picture being shared online in a social
network, which is more likely to be accessed soon after the initial sharing by noti�ed friends,
than many years later. In an e�ort to minimise the picture retrieval times, the service provider
might want to keep recently uploaded submissions on faster SSDs, while slowly moving over
ageing entries to cheaper HDDs.

It has been a long-standing goal of data storage to utilise di�erent storage properties of available
media, and attain some of the bene�ts of faster storage devices at a fraction of the cost of a
homogeneous deployment.

Objective

The objectives of this thesis are threefold:

The design and implementation of an object store interface for the B𝜀-tree storage stack, that
extends the scope of the key-value store to objects of arbitrary size, accompanied by a convenient
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and misuse-resistant interface that facilitates a multitude of applications. Additionally, a
mechanism for the utilisation of the di�erent properties found in modern storage devices is
desired, aggregating cost-e�cient HDDs and more capable SSDs into a tiered storage system
with the potential to outperform an HDD-only system at signi�cantly lower cost than an
SSD-only system. Thirdly, the implementation of an object storage backend for an existing
storage framework (JULEA), to make the new object functionality immediately available to
existing applications without requiring any integration e�ort.

Outline

Background introduces concepts necessary for the remainder of this thesis, such as di�erent
storage abstractions and distinct usages of dissimilar storage devices.

Related work provides a sampling of di�erent storage organisation approaches, to illustrate
the breadth of the design space, and assist in comparing this work.

Object store develops the requirements and design of an object store built on top of the
B𝜀-tree storage stack.

Tiered storage selects an approach to tiered storage, and designs an incremental storage tier
selection system.

Database improvements details a variety of miscellaneous improvements to the B𝜀-tree
storage stack, which are not speci�c to either object- or tiered storage.

Applications lists and describes two integrations of the B𝜀-tree storage stack library.

Evaluation brie�y advocates the testing approach of the B𝜀-tree storage stack, before mea-
suring its performance in varied situations.

Summary condenses the primary results of this work and suggests an assortment of future
improvements.
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Chapter 2.

Background

In this chapter, the B𝜀-tree storage stack and related concepts are introduced, to be built upon
in the remainder of this thesis.

2.1. Storage abstractions

When storing data on a computer system, there are multiple storage abstractions available,
each with di�erent advantages and disadvantages (summarised in Table 2.1). Among them
are:

Block storage Modern storage hardware is designed around the concept of block storage,
allowing operating systems and applications to read from and write to numbered ranges of
�xed-size blocks. The tasks of space accounting and user data organisation are left to the user
of the block storage interface. A block device is generally managed by a single party, because
di�erent organisational strategies could lead to data corruption without shared cooperative
space accounting.

Even though block storage is typically associatedwith physical hardware, it can also be used over
a network with the network block device (NBD) or internet small computer systems interface
(iSCSI) protocols [Becker, 1999], or as virtual block devices with e.g. software redundant array
of independent disks (RAID) [Curry et al., 2010].

Even providing a comparatively simple block interface can bear surprising complications, if the
underlying storage technology does not match the abstraction closely. For example, users are
sometimes expected to cooperate with the storage device itself (physical or virtual) via TRIM
(SATA)/UNMAP (SCSI) commands to communicate that a given block range is no longer in use.
This is important for lower level abstractions like the �ash translation layer of an SSD1, which
can drop the unused blocks from its internal mapping and reduce the amount of unnecessary
page copies during subsequent program-erase cycles. Similarly, a virtual machine guest system
can notify its thinly provisioned virtual block devices of unused blocks, so that the host system
can reuse the freed space for other purposes.

Block devices are usually operated via the SATA and SCSI2 protocols, although e.g. Linux-
based operating systems expose them in terms of more familiar POSIX �le operations to user
applications.

1Though it can be bene�cial for HDDs as well, when using shingled magnetic recording (SMR) [McMillen, 2020].
2Which includes serial attached SCSI (SAS)
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Key-value storage Key-value storage di�ers from block storage in multiple ways, most
importantly the indexing method via arbitrary byte sequences instead of block addresses and
the relaxed constraints on value sizes: although the associated values are often still limited
in size, and are fetched or set in their entirety, they no longer need to be exact multiples of
any block size. The used keys can similarly be of varying sizes, though the key-value store
may impose maximum length limits and character set restrictions. The keys themselves are
conceptually independent of each other, and do not need to be contiguous, but they are required
to be unique across their namespace [Elmasri and Navathe, 2017].

In contrast to block storage, space allocation and management is handled by the key-value store,
and the saved key-value associations can (in principle, not necessarily every implementation)
be retrieved, changed, and deleted concurrently, without requiring the cooperation of every
user that would be necessary with block storage.

Filesystems Commonly available with every popular desktop operating system, �lesys-
tems o�er a hierarchical organisational structure for arbitrarily-sized �les. This hierarchy
presupposes that keys can no longer be chosen freely, but come with additional constraints:
�le keys (commonly referred to as paths) are constructed from multiple segments, joined by
path separators, and preceding path segments must already have been created before invoking
certain operations [Pate, 2003].

Files themselves are usually addressable with byte granularity, and can themselves have arbi-
trary sizes in byte increments up to the �lesystem’s capacity or active quota.

Although individual key-value stores may have a custom permission system, access control is
an integral part of popular �le systems, integrated with the operating system user registry, and
capable of hierarchical per-�le restrictions on the actions other users are allowed to perform.
In addition to a set of �xed per-�le attributes, many common �lesystems o�er the association
of user-supplied key-value pairs with �les, to store application-de�ned metadata.

Object stores Object storage is characterised by variable-sized named data associations called
objects, which are often accompanied by per-object con�gurable metadata. These objects are
indexed similarly to key-value stores and �le systems, but without any hierarchical constraints.
Object stores are often used to store large amounts of binary user data, but also �nd use in
high-performance computing (HPC) environments [Smart et al., 2017].

Similarly to �lesystems, object stores permit arbitrarily-sized data with arbitrary (unaligned)
access o�sets and lengths, and manage the available space internally [Factor et al., 2005]. Al-
though the set of operations overlaps between di�erent implementations, the actual interface is
speci�c to each object store, and the feature set and speci�c consistency guarantees may di�er.
Even though object stores do not account for local system users, particularly the object stores
with network interfaces have �ne-grained access policy systems in place, de�ning the set of
users who are permitted to perform an action on a subset of objects [Backes et al., 2018].

In addition, object stores sometimes feature namespaces or buckets, which provide a means of
grouping objects and providing coarse-grained access control [Backes et al., 2018]. Within such
a namespace, each object is independent from other objects, unlike the �lesystem abstraction,
which encodes �le relations hierarchically. This comparative lack of interdependence simpli�es
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Abstraction Indexed by Value size Access granularity Metadata

Block Logical block address Block size (e.g. 512 B) Multiples of block
size

None

Key-value Arbitrary byte string Variable, often lim-
ited to 4MiB or less

Entire value None

File Hierarchical path Variable Byte POSIX attributes and
xattrs

Object Arbitrary byte string Variable Byte Custom metadata

Table 2.1.: Comparison of the discussed storage abstractions.

distributed storage because operations on one object can be ful�lled independently of concurrent
or past operations on other objects.

2.2. Heterogeneous storage

Many storage systems are capable of utilising the diverse properties of current storage devices,
and presenting them to the user with a uni�ed interface. Although the classi�cation is not
always explicit, similar storage devices are grouped together into storage classes. This
strati�cation into storage classes could originate from signi�cant di�erences in throughput or
latency, like with modern SSDs and HDDs, but a storage system can also optimise for other
metrics like durability or cost [Tang et al., 2016].

Due to the favourable capacity-cost ratio of HDDs, they often serve as one of the lower tiers,
with an upper tier comprised of faster �ash-based storage [Lüttgau et al., 2018].

An important aspect regarding redundancy, capacity, and performance is whether data exists
only on a single class, or on multiple, and whether it is moved or copied onto di�erent storage
classes. This represents the di�erence between tiered storage and caching:

• Distributed (Move): Data spansmultiple classes, but individual parts are not redundantly
stored on multiple classes.

• Replicated (Copy): Data is fully present on a single class, with full or partial copies on
another class.

Although these terms are not used consistently across publications and software documentation,
tiered storage refers to the usage of multiple storage classes without data duplication in
this thesis, and storage classes used for tiered storage are storage tiers. The distinction is
important when considering redundancy: if a device class is only used to redundantly store
data to accelerate future access, its failure will not cause the loss of data, whereas a storage
class containing the only copy of a datum is not expendable, and its failure will result in lost
data. Thus, there is more incentive to use redundancy aggregations with tiered storage.

In addition, the method of class assignment can be automatic or user/client-initiated:

• Dynamic: Data is automatically re-assigned to another class at runtime, e.g. due to
access patterns or its age.

• Static: Data is assigned a class during creation, and does not change class unless in-
structed to.
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When categorised by these two criteria, the following four usage types of heterogeneous storage
arise:

Dynamically assigned (re)distribution Perhaps the most complex of all four cases, systems
performing dynamic distribution do not only move data between storage tiers, but also decide
which data to move on their own, e.g. according to previously de�ned policies or observed
access patterns [Zhang et al., 2010]. This process of automating data migration in a tiered
storage system is also called information lifecycle management (ILM) [Alatorre et al., 2014].

Write-caching in write-back mode (but not write-through caching) can also be considered
dynamic redistribution, because writes are temporarily only present on the cache class before
being written to the underlying primary data class. Contrarily, write-through caching ensures
written data is written to both classes before completing a write operation, and would thus not
be considered dynamic redistribution.

Statically assigned distribution With static distribution, the data is moved across storage
classes only at the user’s or client application’s instruction, not automatically. The system is
not limited to moving entire objects/�les to another class, it could also partially move a datum
and keep the rest in its original position.

Dynamically assigned replication Dynamic replication of data from a slower tier onto a
faster tier represents a typical read-caching usecase, where data is copied onto a faster cache
device to speed up future read queries. This is implemented in e.g. the Linux virtual block layer
cache bcache3.

Statically assigned replication For example, the live replication of an SSD onto a RAID
mirror of two HDDs does not increase read or write performance of the live system, but it does
provide some measure of data loss resistance. By a wider de�nition, many local and remote
backup processes fall into this category.

2.3. B𝜀-tree storage stack

The B𝜀-tree storage stack is a library written in Rust which primarily provides a key-value
storage interface by managing on-disk B𝜀-trees [Wiedemann, 2018], available under either the
the MIT or Apache 2 license. For this purpose, it implements multiple layers often provided
by the operating system in an e�ort to improve performance by tailoring each component
speci�cally to the needs of the whole system. This includes a storage layer to manage raw
block devices and construct higher-order devices like mirrors and parity aggregations, and its
own cache to complement the operating systems page cache4.

3https://bcache.evilpiepirate.org/
4Which is disabled in Section 6.2.
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2.3.1. B𝜀-tree

The B-tree data structure is a generalisation of balanced binary search trees (BST), which
preserves the ordering of its nodes and the logarithmic query complexity, but increases the
logarithmic base by adapting the amount of child nodes (fanout) [Comer, 1979]. This makes
it more suitable as a data structure for usage on HDDs, where the access time is not only
determined by the total amount of transferred data, but also the amount of disk seeks.

A B𝜀-tree is a tree data structure related to B-trees, which has been further generalised to
amortise the cost of write operations, by bu�ering changes in internal tree nodes and only
applying them after su�cient changes have accumulated, thus batching the costly read-modify-
write cycles commonly associated with on-disk B-tree insertion [Bender et al., 2015]. As a
result of this design goal, it is also classi�ed as a write-optimised data structure (WOD).

This is accomplished by dedicating a portion of the space available in internal nodes to holding
messages for its child nodes. These messages encode an action to be taken upon �ushing to
the target node, and can sometimes replace a costly read-modify-write cycle with a single
message insertion. The size distribution of an internal node is parameterised by the 𝐵 and
𝜀 ∈ (0, 1) parameters. Although other descriptions use items/key-value pairs as the unit of
𝐵 [Bender et al., 2015], the B𝜀-tree storage stack de�ned 𝐵 to be the used block size, and it
is thus measured in bytes [Wiedemann, 2018]. With 𝐵 being the size of the entire node, the
B𝜀-tree storage stack designates a space usage of 𝐵𝜀 for the pivots of internal nodes, and the
remaining 𝐵 − 𝐵𝜀 for the purpose of bu�ering messages. Due to variable message sizes, these
byte limits do not translate directly into item counts. For more details on this distinction, refer to
[Bender et al., 2015] and the original thesis on the B𝜀-tree storage stack [Wiedemann, 2018].

As shown in Figure 2.1 (left side), a B𝜀-tree node can be either an internal node, or a leaf node.
An internal node with 𝑛 children contains 𝑛 child bu�ers, and 𝑛 − 1 pivot elements which
separate the key spaces of each child. Messages intended for the key range of a child node
are bu�ered in the respective child bu�er, which also holds the reference to the child node
itself. Leaf nodes store a sorted collection of key-value pairs, implemented internally with an
in-memory B-tree in the B𝜀-tree storage stack, but this is an implementation detail and the
operations of a B𝜀-tree do not rely on a particular leaf node representation.

The message type used with a B𝜀-tree is con�gurable, and the set of operations which can
be described by a single message determines the tree operations which can be bu�ered. As
an example, the following three operations could be bu�ered given an appropriate message
type:

• Insertion of a new entry, by encoding a message that will insert the new entry.

• Modi�cation of an existing entry, by encoding a message that will apply some change
to an entry. This could be a complete or partial replacement, or a type-aware modi�cation
like the incrementation of a stored integer.

• Deletion of an existing entry, by encoding a message that will delete that entry.

In the case of the B𝜀-tree storage stack, the implementation diverges from the standard de-
scription of a B𝜀-tree: internal nodes only need to hold up to a single message for each key, by
adding the requirement that messages must support merges with another message and yield a
new message describing the combined e�ect of both original messages in the correct order.
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This restriction simpli�es the management of messages, and permits advanced message types
to reduce their size during merges if one submessage cancels the e�ects of another.

... del z ...

... del b n = 11 x = 21
z = 7

a = 1
b = 2 m = 10

x = 42
y = 21
z = 8

...c w

Root

Internal Pivot

Leaf

Key a b n x z

Root del z

Internal del b n = 11 x = 21 z = 7

Leaves a = 1 b = 2 x = 42 z = 8

Result 1 del 11 21 del

Figure 2.1.: Exempli�ed point queries (right) into a B𝜀-tree with two internal levels (left). The
messages bu�ered in each segment of an internal node are intended for the key
range of its corresponding child node.

When querying for the current value of a key, the tree is traversed by starting at the root and
then repeatedly selecting the child node with a key range matching the queried key, until a leaf
node is encountered. During this traversal, all encountered messages intended for the queried
key are accumulated, and replayed in correct order on top of any potential value found in the
leaf node, to present the user a view where all messages are immediately applied.

Figure 2.1 demonstrates the bu�ering of modifying actions with a simpli�ed message type,
which only permits deletions in the form of del x, and replacements like x = 9. It displays a
subtree of an example B𝜀-tree, and lists the relevant messages and results of a selection of point
queries.

• a: This represents the simplest case, point queries occur similarly to non-bu�ering
structures, as there are no bu�ered messages for a, and the �nal value of 1 is found in
the leaf node.

• n: The insertion message for n (n = 11) has not been �ushed all the way to a leaf node
yet, but the message restores the value during playback, so the �nal value is the same as
if it had been fully �ushed: 11.

• x: Although a value of 42 is retrieved from the leaf node, the internal node contains a
replacement message x = 21. When playing back that message, the intermediate value of
42 is replaced with 21, which is returned as the �nal value.

• b: This entry has been deleted, but the deletion message has not been fully �ushed yet, so
the leaf still contains the old value. The application of del b will delete the intermediate
2 found in the leaf node, and report to the caller that no entry for b exists.

• z: Neither of the previous values (z = 7 and z = 8) a�ect the �nal result, as the deletion
message del z in the root node deletes any intermediate value, in order to correctly
indicate the non-existence of z to the caller. The deletion message del z is the newest of
the displayed messages, and its insertion is unlikely to require any disk activity as the
root node is usually already cached.
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With these simpli�ed examples, the point query algorithm could be aborted upon �nding the
�rst message, because it always replaces the previous value upon application in this example.
However, other message types can be used with the B𝜀-tree storage stack, which might not
replace the value but instead make smaller changes to it (e.g. the integer addition mentioned
earlier).

2.3.2. Architecture

Object store

Database

Dataset

Snapshot

Allocation Handler

B𝜀-tree

Data Management

Storage Pool Checksum
Compression

Allocator

Cache

Parity Mirror

Figure 2.2.: Conceptual overview of the B𝜀-tree storage stack architecture, reconstructed from
a �gure in [Wiedemann, 2018]. The object storage and tiered storage extensions of
this thesis are highlighted in blue.

The B𝜀-tree storage stack is constructed from several components, as depicted in Figure 2.2, with
most of them implementing an interface to allow interoperation of di�erent implementations of
each role [Wiedemann, 2018]. The database layer manages datasets and snapshots, wraps them
with a user-friendly API, and ties together the other components into a functioning system,
including e.g. the database con�guration and initial reading of the database superblocks.
Operations on a B𝜀-tree interact with the data management layer to handle tree manipulation
and reshaping as necessary, during which it can simply request database objects from the data
management layer. Indeed, the data management layer transparently serves mostly opaque
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objects to the upper layer5, without any knowledge of the tree nodes contained within. It ties
into the cache system to minimise disk accesses, but will query the storage layer on cache
misses. In the other direction, it is capable of cycling allocation segments, requesting block
ranges from those segments, and then instructing the storage layer to perform the actual write
after informing the allocation handler to persist the allocation in the allocation bitmap.

Storage system The storage system is built around modular virtual devices also called vdevs,
which can be organised in a tree-like fashion. A leaf vdev can be an operating system �le,
which includes raw block devices like disk partitions. These leaf vdevs can then be aggregated
into one of two di�erent new vdev types:

Mirror A mirror vdev writes the received data to all its child vdevs, and can sustain the failure
of all but the last vdev. Although it is limited in capacity and write speed to the smallest
and slowest device respectively, the mirror can distribute reads across its child vdevs to
surpass the read transfer speeds of a single device.

Parity The parity vdev distributes its writes to its children, and generates parity data in order
to sustain the failure of any single child vdev. Unlike the mirror vdev, which could choose
to read only from a single disk, the parity vdev has to read from multiple of its child
vdevs to reconstruct the requested data, similarly allowing for higher read throughput
than a single disk.

The storage system additionally maintains a job queue and thread pool, onto which it distributes
incoming write and read requests. In cooperation with the data management layer, which
generates the initial checksums when writing data, each vdev is capable of verifying its own
data against a checksum while reading.

Key-value interface The database layer uses the dataset abstraction to support the use of
multiple B𝜀-trees. Each dataset can be named with an arbitrary byte string, and later re-opened
with that same name.

Datasets are parameterised by the used message type, and the available operations di�er if the
user instantiates a dataset without the default message type. Once a dataset has been created
and opened, the following key-value operations are available for all datasets:

insert_msg Insert an already constructed message into the tree for a given key.

get Retrieve the value for a given key, while applying all encountered messages in the correct
order. This operation is also called a point query.

range Retrieve a range of key-value pairs for a speci�ed key range.

Additionally, datasets using the default message type support the following convenience
functionality, which are all wrapping the previous three functions and generating the message
automatically:

insert Inserts an insertion message, which will overwrite the value for a given key entirely
with a speci�ed byte sequence, or create a new entry if none existed.

5Although it is aware of copy-on-write semantics
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upsert An upsert message replaces the value of an entry only partially, substituting a speci�ed
range of an entry with a new byte sequence.

delete Inserts a deletion message for a given key.

range_delete E�ciently deletes entire tree nodes instead of inserting individual deletion
messages. Unfortunately, the corresponding tree operation is not fully implemented,
and does not perform the necessary rebalancing/merging after removing entire subtrees
within a key range.

2.3.3. Implementation language

The B𝜀-tree storage stack is written in Rust, which is a comparatively new programming
language released in 20156, and intermittently developed at Mozilla Research for the purpose of
furnishing a safe and performant language suited for the complexities of web browser develop-
ment, particularly if concurrency is involved [Rust team, 2016]. It features strong static typing
with local type inference, a statically-veri�ed deterministic resource management concept
designed around value ownership and borrowing, as well as compiler-assisted reasoning about
thread safety [Klabnik and Nichols, 2019, ch. 16.04/p. 368-369], and is commonly compiled via
the LLVM7 compilation infrastructure.

Due to the deterministic control over resource usage while retaining memory safety by de-
fault8, Rust is well suited to performance-sensitive low-level abstractions such as operating
system kernels, or storage systems. Indeed, Rust is not an uncommon choice for the imple-
mentation of a storage system, as there are multiple local storage systems with a key-value
interface [Neely, 2017, Meunier, 2016, Persy developers, 2017], a distributed key-value store,
which serves as the backend for multiple databases built on top (TiDB9, Zetta10, and Tidis11),
and it is even used in Amazon’s S3 cloud object storage system [Asay, 2021], albeit in an
unspeci�ed capacity.

2.4. JULEA

JULEA is a set of libraries created initially by Michael Kuhn, o�ering abstraction layers for
databases, key-value storage, and object stores. Applications can use it to translate higher-level
storage operations into calls to a variety of backends, without being aware of the con�gured
backend, and whether the backend is local or remote [Kuhn, 2017]. It is operable in a client-
server con�guration, where the application may run on a di�erent host than the storage
provider, or can alternatively be used entirely within the application process.

Because the backends conform to a common interface, they can be treated as interchangeable
from the application’s perspective, decoupling its development process from any speci�c
storage implementation. Although JULEA also provides abstractions for key-value and database

6Version 1.0, previous versions have been available since 2010
7https://llvm.org/
8With the option of bypassing compiler checks if necessary
9https://github.com/pingcap/tidb
10https://github.com/zhihu/zetta
11https://github.com/yongman/tidis
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operations, only the object storage abstraction will be considered here. At the time of writing,
JULEA o�ers three functional object storage backends, implemented in terms of POSIX-standard
functions, the Gnome Input/Output library GIO, and with librados from the Ceph project.

An object backend is expected to implement the following operations:

create Creates a new object

open Opens an existing object

delete Deletes an existing object

close Closes a previously opened object

status Queries the size and modi�cation time of an object

sync Ensures any outstanding operations for an object have been completed

read Reads a speci�ed object range

write Writes data into a speci�ed object range
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Chapter 3.

Related work

This chapter supplements the previously introduced theoretical concepts of object stores and
tiered storage by describing concrete implementations. A few of their design decisions will
later be compared to decisions made during extensions of the B𝜀-tree storage stack.

3.1. Object storage

Many related storage solutions are of a distributed nature, taking advantage of the reduced
interdependencies of key-value and object storagewhen compared to �lesystems, to horizontally
scale across multiple servers. Although the B𝜀-tree storage stack could be used as a component
in a similar distributed system, this section is mostly concerned with the data organisation of
each related work, and omits their distributed aspects. Nevertheless, it should be noted that
the additional constraints of a distributed system result in di�erent design restrictions than
those of a local storage system, and a direct comparison is not always useful.

MongoDB/GridFS The document-oriented NoSQL database MongoDB enforces a size limit
of 16MB per stored document, and speci�es an abstraction on top of the document interface to
circumvent this size restriction: GridFS. Larger �les are split into multiple chunks of a limited
size by the database driver, and additional metadata such as the length, creation time, and a
checksum are stored in a separate document [Chodorow, 2013]. After an object has been stored,
the driver transparently maps read requests onto the previously generated chunks. Updates to
individual chunks after the initial creation of an object are not supported [Banker et al., 2016].

Ambry The decentralised object store Ambry, developed by the social networking com-
pany LinkedIn to store immutable objects, chooses a di�erent approach: objects are stored
in �xed-size �les (100GB) called partitions, and changes like additions or deletions are ap-
pended to the respective end of the partition. Space of deleted objects is only freed during
a periodic compaction process. Objects are split into chunks with a size of 4-8MB to resolve
performance issues, despite not being built on top of a key-value store. Instead of keeping a
separate cache, Ambry relies on the operating system’s page cache to serve reads of recent
data [Noghabi et al., 2016].
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Atlas The search engine company Baidu introduced the scalable key-value store Atlas in
2015, which manages to retain all metadata in main memory despite being deployed on low-
powered ARM servers with only 4GB of memory per 16 TB of persistent storage. Atlas imposes
a maximum size of 256 kB on values, and identi�es them by a truncated SHA1 hash1, thus
providing entry deduplication at no extra cost, and preventing future modi�cations. Internally,
the keys and metadata are stored in a log-structured merge tree (LSM tree), while the values are
allocated in patches. After reaching their capacity, each 64MB patch is split into 8MB blocks,
erasure-coded for redundancy, and distributed to available block servers [Lai et al., 2015].

SeaweedFS SeaweedFS2 is a distributed object storage system comparable to Ceph in func-
tion, with support for tiered storage. Objects are stored in volumes, which are large3 �les
stored on ordinary host �lesystems. Although SeaweedFS only manages two storage classes
by default, it supports arbitrary tagging of volumes, so that the use of more than two storage
classes is possible [Lu, 2021].

The documentation suggests that allocation preferences are not speci�ed individually during
an object’s creation, but that groups of volumes called collections and key pre�xes can be
designated for allocation within volumes of a particular class. Class reassignment is supported
only at a by-volume granularity, by moving the large volume �les onto another �lesystem.

Ceph Ceph represents one of the most well-known distributed storage solutions available,
o�ering not only an object abstraction, but also scalable block- and �le storage. It is built
around an array of object storage daemons (OSDs), which serve as the backing storage for
higher-level distributed features. In 2017, the project switched the default storage backend
from FileStore, which stored data on existing host �lesystems such as XFS, to BlueStore, which
directly manages block devices with direct IO.

BlueStore allocates block extents for object data and maintains internal and per-object metadata
in the embedded key-value store RocksDB, which stores its own data via a minimal �lesystem
translation layer purpose-built for RocksDB. By utilising the merge-operator functionality
of RocksDB, BlueStore is able to record space allocations without incurring the costs of a
read-modify-write cycle. Additionally, BlueStore is designed for cooperation with newer zoned
storage interfaces, which more closely match the internal implementation of modern SSDs and
SMR HDDs. It employs copy-on-write for large write operations, and batches small operations
within RocksDB, with a threshold that takes into account the underlying storage hardware:
64 KiB on HDDs, and 16 KiB with SSDs [Aghayev et al., 2019]. There is limited support for
tiered storage, in that the write-ahead log and internal metadata can be stored on separate
storage devices [Ceph authors, 2017].

1From 20 to 16 bytes
2https://github.com/chrislusf/seaweedfs, Apache License 2.0
330GB by default
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3.2. Tiered storage

As presented in Section 2.2, tiered storage can be further classi�ed by the initiator of migration,
i.e. whether inter-tier migration is induced by a dynamic policy, or statically assigned by the
user/application.

Dynamically assigned tiered storage Dynamic tiered storage systems automatically mi-
grate data between storage classes according to precon�gured policies. Even though they may
not be entirely separate concerns, or documented as such, a dynamic system could be divided
into a policy engine and a storage system. With this separation, the storage system implements
static tiered storage by de�nition, as the dynamic decision process belongs to the policy engine,
at least conceptually.

Such policies could range from simple age-based methods, over more elaborate classi�cation
via path pre�xes, to complicated policies involving access pattern predictions. The potential
cost savings of automatic tiered storage already motivated research into migration policies in
1990, when the lower storage tiers consisted of optical media and tape libraries instead of HDDs
[Klastorin et al., 1993]. Multiple research papers have focused primarily on the design and
tuning of such policies: [Moinzadeh and Berk, 2000] proposes and analyses a dynamic archival
policy on a purely theoretical level, optimising for average read times under the assumption
that access frequencies decrease as data ages. Similarly, a variety of upgrade and downgrade
policies are explored in [Herodotou and Kakoulli, 2019], within the context of tiered distributed
�le storage for cluster computing.

Composition of single-tiered systems Tiered storage does not necessarily require a storage
provider aware of multiple storage classes, or that each storage class is part of the same system.
For example, a periodically executed script which moves old �les from a fast �lesystem to a
slower �lesystem and creates symbolic links in their place would constitute a simple tiered
storage system4, despite neither �lesystem necessarily spanning multiple storage devices.

In GRANDET, this approach is applied to a selection of Amazon Web Services’ (AWS) storage
options, each unaware of its participation in a tiered storage system, yet presented in a uni-
�ed manner to applications via an object and �lesystem proxy component [Tang et al., 2016].
Depending on the desired durability, availability, the predicted access pattern, and other require-
ments, each object is placed on the most economical option among the suitable storage types,
which could be an ephemeral local disk, shared block storage, or AWS’ own object storage
solution. The decision is not only in�uenced by a set of optional requirements passed during
object creation, but also by access patterns of similar objects, where similarity is determined via
an optional object tagging system, Additionally, GRANDET can automatically migrate objects
to another storage type when access patterns or pricing models change.

This approach of integrating existing storage systems into a storage hierarchy obviates the
need of building a custom system aware of tiered storage, but migrations between tiers might
be more e�cient if performed within a single system.

4To provide a consistent uni�ed interface, a few scripts for listing and deletion of �les/objects would be necessary,
which would e.g. also delete the referenced �le when deleting a symbolic link.
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Chapter 4.

Object store

Throughout this chapter, the B𝜀-tree storage stack is extended to support the storage of
arbitrarily-sized objects, by building on top of the existing key-value interface. The tradeo�s of
necessary design considerations involved in key-value organisation and user-interface design
are contrasted, and the �nal design illustrated.

4.1. Requirements

Initially, the functionality of an object store may not appear to di�er signi�cantly from that
provided by the already existing key-value interface described in Section 2.3.2. Both modes
address a non-hierarchical collection of data by a user-provided arbitrary byte key.

Although the keys and values of both modes are variable in length, the key-value store is only
equipped to handle comparatively small entries, and has no support for partial rewrites of a
value. In contrast, an object store is expected to store potentially much larger values, up to
and exceeding multiple GiB. These sizes require operations to selectively only operate on a
subsection of the values, as loading the entire value into memory would be prohibitive.

These requirements resemble traditional �le systems in that both provide keyed dynamically-
sized data storage with large upper limits on �le/object size, but whereas �le systems often
organise data in a hierarchical fashion with nested directories, an object store is characterised
by �at namespaces, without deriving any inter-object relations from the object keys.

4.1.1. Desired operations

A few essential operations are required for basic manipulation of objects:

Create
A new object is created. Attempting to re-create an already existing object should result
in an error.

Read
A range of an existing object’s data is read and returned to the caller.

Write
An open object is partially or entirely (re-)written.
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Delete
An existing object is deleted. Attempting to delete a non-existing object should result in
an error.

If the interface is built around stateful operations, e.g. with object handles or due to an
externally needed API, two additional operations become necessary to manage the lifecycle of
the per-object-handle state:

Open
An existing object is re-opened and a handle to the opened object is returned. Attempting
to open a non-existing object must result in an error.

Close
The handle to an existing object is closed. The system may defer certain outstanding
operations until handle closure, depending on the targeted consistency and recovery
guarantees.

Depending on the usecase, the following additional operations may provide convenience to
the user:

Flush/Sync
Wait for outstanding operations to complete, either for the whole object store, or for a
single object.

Listing
Query the object store for a list of contained objects. The listing may be exhaustive, but
could also support �ltering the key by pre�x or range, as well as more advanced �ltering
over other metadata.

Rename
Replace the key of an object. This can be done without special support by using the
essential operations to manually copy the source object to a new object, then deleting
the old one, but a less expensive implementation would be preferable.

Copy
Create an identical second object, which is independent of the source object after comple-
tion of the copy operation. This may be implemented by referencing unchanged chunks
of the old object, to reduce space usage if the copy diverges only partially from the source.

Link/Unlink
Create/Remove an alias for an existing object. The exact semantics are left unspeci�ed,
most notably whether the target is referenced by name or object ID. This determines
whether the data readable from a link is preserved after a subsequent rename/deletion of
the target object. This would likely require either a way to di�erentiate between the link
and a full object, or object reference counting.

Status
Object metadata is retrieved, including e.g. size and modi�cation time.

Considering the intended integration into JULEA, all operations required for the implementation
of a JULEA object backend need be implemented. In addition to the essential operations, such
an object backend requires Flush, and Status. After pointing out that cheap object listing
can be implemented in the B𝜀-tree storage stack, an operation for the listing of all objects,
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optionally �ltering by pre�x, was added to the set of required operations for JULEA object
backends.

4.1.2. Metadata

Metadata is information pertaining to other information, and di�erent kinds of metadata can be
associated with individual objects. Certain metadata attributes are implementation details, not
meant to be exposed to the user. The following exposed kinds of metadata are considered:

Object size
Logical size of the object in bytes, updated on every write operation. The size of an object
is de�ned as the largest o�set a�ected by any modi�cation during the object’s lifetime.

Modification time
Timestamp of most recent write operation to an object, updated even when the object
data is not altered by the operation, e.g. with a write size of 0, or when the data being
written was already present at the target destination.

Arbitrary user-provided key-value pairs
The user may register additional key-value pairs of per-object metadata, e.g. HTTP
headers to serve an object with, an identi�er of the original author, or a short summary
to be displayed while generating a listing of many large objects.

Object size and modi�cation time di�er from custom metadata, in that they are automatically
managed and assigned meaning by the object store. In contrast, user-provided custom metadata
is only altered at the user’s request, and their values are never interpreted. Examples of custom
user metadata usage could be the expiry time of an object, the logical owner, or other forms of
access control metadata.

Because these two managed attributes are always present for every object, they can be queried
with the Status operation, whereas a few more operations are required to enable editing and
reading of custom attributes:

Metadata List
Gather all custom attributes of a speci�c object. Due to the lower expected size of
metadata, �ltering mechanisms are of a lower priority here.

Metadata Get/Set
Get or set a speci�c attribute of an object by name. If attempting to set an existing
attribute, the previous value is replaced.

Metadata Delete
Remove a speci�c attribute of an object by name. Attempts to remove a non-existent
attribute are ignored.

4.2. Data organisation

This section de�nes the key-value layout of object data, and speci�es the behaviour of discon-
tinuous objects.
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4.2.1. Object chunking

The key-value interface of the B𝜀-tree storage stack, as described in Section 2.3.2, already
supports the creation and deletion of key-value associations, where each key and value can be
a user-de�ned byte sequence. Additionally, the values of stored associations can be queried
and rewritten. While this is remarkably close to the essential operations de�ned above, there
are a few important distinctions:

Size limit While the key-value interface originally did not check the size of keys and values,
the tree layer is unable to handle arbitrarily large byte sequences. As determined by own
experiments, attempts to insert values in excess of the maximum node size can result in
a failed split of the node in question (as a split requires multiple elements, and a very
large insertion could trigger a split with just one element), from which the database is
unable to recover1.

Access granularity Key-value pairs can only be queried entirely. This is sensible for small
values, where the entire containing node is already fetched and decoded, so that the cost
of returning the entire value is the same as returning just a portion would be. In contrast,
the user might want to, or even be required to, process a large object in smaller steps,
requiring support for partial queries.

Both of these issues prevent the unmodi�ed use of the key-value interface for objects, but they
can be solved by the distribution of larger objects across multiple key-value pairs, henceforth
called chunks. Each individual chunk’s size can be kept below a chosen limit, scaling the
amount of chunks with the object’s size instead of scaling the size of a singular chunk. Partial
queries can be implemented by querying only a subset of the underlying chunks, no longer
requiring that the entire value be present before returning a portion of it to the user.

The size of each individual chunk determines not only the access granularity, but also in�uences
how often a given operationwill cross chunk boundaries and need to be split into sub-operations.
A �xed-width splitting strategy was chosen due to the simplicity of chunk index calculations,
but more advanced chunking strategies, e.g. with dynamic widths, might result in reduced
I/O ampli�cation when �xed-width chunks are too wide, or reduced CPU usage when �xed-
width chunks would be too narrow. The concept of splitting objects for storage in a key-value
store also �nds a precedent in GridFS, which splits �les over multiple entries in MongoDB, as
previously described in Section 3.1.

A chunk size of 128 KiB is chosen as a compromise to support both random small operations and
large sequential operations with acceptable I/O ampli�cation and CPU overhead, and because it
is the default record size of ZFS [OpenZFS project, 2020, Section "Dataset recordsize"]. Dynamic
changes to the record size are not currently supported, but the chunk size is only determined
by a single compile-time constant, so future changes to the chunk size remain feasible within
key-value size limitations.

Internal chunk iteration An operation needs to be split into sub-operations whenever
it operates on a user-speci�ed portion of an object, potentially crossing chunk boundaries.
To avoid reimplementation of the chunk-splitting logic for each operation, the ChunkRange

1A maximum value size of 512 KiB has since been added, and attempts to insert larger values will result in an
error.
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structure is introduced as an internal abstraction, consisting of the two extremes of the spanned
range, to be used like shown in Listing 4.1. It can also be constructed from byte o�sets, and
allows for partial chunks at the beginning and end if the byte o�sets are not aligned to the
chunk width. This multi-chunk range can then be split into a variable amount of smaller
ChunkRanges, each only spanning at most one full chunk, via an iterator returned by the
split_at_chunk_bounds function. The �rst and last chunks may span less than one full chunk
width, and the iterator may also not return any, or just one, chunks in case the range is empty
or contained entirely inside one aligned chunk width. The ChunkRange API is intended to be
used as shown in Listing 4.1, and �nds use in the implementations of the Read and Write
operations.

1 let chunk_range = ChunkRange::from_byte_bounds(offset, buf.len() as u64);

2 for chunk in chunk_range.split_at_chunk_bounds() {

3 let len = chunk.single_chunk_len();

4 let key = object_chunk_key(self.object_id, chunk.start.chunk_id);

5

6 // now processed up until chunk.end.as_bytes()

7 }

Listing 4.1: Chunking API

4.2.2. Chunk indirection

- Foo|0 -> [... first 128KiB of object data ...]

- Foo|1 -> [...]

... additional chunks ...

- Foo|... -> [... last (up to) 128KiB of object data ...]

Listing 4.2: Direct data layout of key-value pairs to store the object ‘Foo’.

A very simple data layout (example in Listing 4.2) could construct keys by concatenation of the
object name and the chunk identi�er2. This would redundantly store the object name once
per chunk, require dynamic allocation during key construction on every chunk access, and
directly tie the object data to its name. Renaming an object stored in such a fashion (if the
name is embedded in the key) would necessitate either renaming keys without changing the
values, or a move operation of each chunk to a new key, essentially copying the entire object’s
data. Additionally, obtaining a listing of all objects would have to be implemented by iterating
all keys of the tree, which would result in the iteration of every chunk of every object, even
though only the �rst chunk of each would be necessary for the listing. Reading the entire
object store to list the contained objects is prohibitively expensive, and would prevent exposing
this operation to the user.

A level of indirection, as shown in Listing 4.3, is used to decouple the object name from the
constructed keys. By using a �xed-size object identi�er in the place of a variable-length object
name, and maintaining a mapping of names to object identi�ers elsewhere, multiple problems
of direct indexing are resolved:
2With a null byte as separator, because null bytes are not permitted inside object names
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- Meta|Foo -> [ 42 ] <- object identifier of object 'Foo'

- Data|42|0 -> [... first 128KiB of object data ...]

- Data|42|1 -> [...]

... additional chunks ...

- Data|... -> [... last (up to) 128KiB of object data ...]

Listing 4.3: Data layout with indirection

1. Renaming becomes possible without copying the entire object, with a much cheaper
change in the indirection mapping.

2. Object listing can be implemented cheaply by iterating the indirection mapping, iteration
of data chunks is no longer necessary.

3. Fixed-size object identi�ers are still redundant across all chunks of the object, but there
no longer is any signi�cant additional cost to using longer object names.

4. Keys constructed from a �xed-size object identi�er and another �xed-size chunk identi�er
are themselves �xed in size, allowing construction without dynamic memory manage-
ment.

4.2.3. Sparse object semantics

If the write operation allows arbitrary o�sets, the user could pass an o�set past the current
object size, resulting in a sparse object if the operation does not return an error. In this context,
any objects with non-contiguous chunk identi�ers, or internal chunks smaller than the chunk
size, are called sparse objects (as opposed to dense objects).

Rejecting writes past the current object size would require reading the size on every read,
negating some of the advantage of using the write-optimised B𝜀-tree data structure. The object
size can not be cached in the object handle, as another client could concurrently open a handle
to the same object, and alter the object size. To preserve a write-only Write operation, and to
facilitate certain usecases where sparse objects could be useful (such as out-of-order creation
of an object, which would create a temporarily sparse object and �ll in the gaps e.g. in reverse),
the write operation can not reject these o�sets.

The possible existence of sparse objects prompts another decision: if a client writes to a new
object with a large o�set once, what data should be returned when reading that object? A few
options are:

• Existing chunks could be concatenated during Read. Unfortunately, the variable amount
and locations of gaps could not be communicated to the caller without signi�cant diver-
gence from the usual interface of Read functions. This behaviour would be unnecessarily
unintuitive, and most certainly does not match the user’s expectation.

• The gaps could be �lled with zeroes, up until the object’s size. This proposal matches the
behaviour of POSIX-compliant �lesystems, which similarly �ll any gaps with zeroes while
reading [POSIX, 2018]. Additionally, the default message type of the B𝜀-tree storage
stack already zero-�lls values during application if an upsert would otherwise result in a
sparse key-value pair.
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• Expose sparse data as-is, with enough information for the client to implement any of the
other options. This should not be the only option, as users would have to translate this
information into the desired view even when working with dense objects.

To match the expectations formed by POSIX-compliant �lesystems, Read presents a zero-�lled
view of an object, but an additional method exposes the object structure, to permit more e�cient
handling of sparse objects.

Each call to Read incurs the cost of one initial metadata query, as zero-�lling should only occur
up until the object’s size. Concurrent changes to the object will only be observed within the
object’s original boundaries, i.e. size changes of an object will not take e�ect for ongoing read
operations.

The current design does not expose an operation for the conversion of dense objects to sparse
objects without recreation of that object, but such an operation could be easily added in the
future.

4.3. Metadata organisation

To e�ciently ful�l the previously established operations, object data and metadata needs to be
inserted into the key-value database in an organised fashion. The choice of key distribution
determines multiple important properties:

Data locality in nodes
Due to the large node sizes of the B𝜀-tree storage stack, if a key lookup to the key-value
layer results in a new node being fetched, that node is likely to contain additional keys.
It would be desirable for those additional keys to also be relevant to future key-value
requests of the object store, reducing the number of node fetches necessary to ful�l the
object store’s operation. To improve the ratio of relevant to irrelevant information in a
given fetched node, measured with respect to the current operation, data and metadata
should be organised for locality, so that information is kept closely together in the tree
ordering if it’s likely to be needed during the same operation.

Data locality on disk
As an extension of the previous locality property, proximity of related nodes on the block
layer may result in reduced access times. These proximate nodes might have already
been fetched by the read-ahead mechanism, and on a spinning storage medium it would
likely be cheaper to fetch physically close nodes than it would be if they were scattered
without such considerations of locality.

Space usage from keys
Redundant information encoded into the constructed keys can lead to space e�ciency
overhead. For example, if the full object name is used in every chunk key, and that object
name is particularly long, a 1GiB object with a 256 B name would result in the redundant
storage of 2MiB of identical object names.

Ease of key construction
The construction of dynamically-sized keys, e.g. because object names are incorporated
into the �nal key in the form of user-provided and arbitrarily-sized byte strings, may
require copying into a resizable bu�er and cause dynamic allocations. While this e�ect
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is perhaps the least important, the added memory and allocator pressure may negatively
a�ect other parts of the system, and should be avoided where feasible.

This section gradually evolves the �nal key-value layout, and emphasises the reasons and
tradeo�s of each step. The example listings contain abstract keys, their speci�c encoding into
bytes is explained later in this section.

Although the translation mapping from object names to object identi�ers already constitutes
metadata, the previously shown layouts are missing a method of storing the metadata described
in Section 4.1.2.

4.3.1. Fixed metadata

- Meta|Foo|object-id -> 42

- Meta|Foo|mtime -> 1619899200

- Meta|Foo|size -> 44040192

Listing 4.4: Separate �xed metadata

- Meta|Foo -> 42 | 1619899200 |

↩→ 44040192

Listing 4.5: Merged �xed metadata

Like in Listing 4.4, each attribute could be stored separately, assigning one key-value pair per
logical metadatum. This simple approach incurs the space overhead of assigning each of these
three properties a unique key, and having to insert three messages into the B𝜀-tree per object.

As the object identi�er, size and modi�cation time attributes are present for each object, they
could alternatively be merged into a single key-value pair, as shown in Listing 4.5. This is only
feasible because they are automatically managed by the object store, and a �xed-size and stable
encoding format can be selected for each metadatum.

The space overhead of assigning each of these three properties a unique key and inserting
three times as many key-value pairs into the B𝜀-tree, as opposed to only one packed version,
outweighs the simplicity of having three separate values, as each of the properties is only
represented with eight bytes each. Themodi�cation granularity of the separate variant could e.g.
be preserved with the upsert message feature, modifying only a �xed subrange of the metadata
value. Without a mechanism for eager merging of messages, there is a risk of unbounded3

accumulation of overlapping upsert messages, causing a reduction in space e�ciency by storing
outdated upserts, and diminishing read performance by applying upserts with no e�ect on the
�nal return value4. The more compact merged metadata representation is chosen to minimise
storage cost and reduce �xed overhead caused by the key-value operations, such as repeatedly
locating the appropriate tree node.

3Restricted only by the maximum node size
4Both issues are addressed with a custom message type in Section 4.3.3.
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4.3.2. Interleaved/Separate custom attributes

- Meta|Foo|object-id -> 42

- Meta|Foo|custom1 -> baz

- Meta|Foo|custom2 -> quux

- Meta|Bar|object-id -> 43

Listing 4.6: Interleaved custom metadata

- Meta|Foo|object-id -> 42

- Meta|Bar|object-id -> 43

- MetaCustom|42|custom1 -> baz

- MetaCustom|42|custom2 -> quux

Listing 4.7: Separate custom metadata

Packing the custom attributes into a single key, like proposed for the �xed attributes in
Listing 4.5, is hindered by the dynamic size of each attribute. Such a packed format would
require a way to quickly �nd a key-value pair by name, insert new associations, and perhaps
even maintain an index of the starting positions and lengths of each packed attribute.

A higher density of object names reduces the number of nodes necessary for a full object
iteration. When large or too many key-value metadata pairs are inserted, that density decreases
and the iteration process is required to read and discard this custom metadata. In this respect,
a separate layout like shown in Listing 4.7 would be favourable for the object iteration speed
if custom metadata is not accessed, while interleaving the �xed and custom metadata like in
Listing 4.6 would allow the inspection of an object’s entire metadata during a single range
query.

The interleaved layout is chosen to speci�cally support object scanning usecases which involve
the inspection of custom metadata, as the relevant metadata will be already cached instead
of needing to be fetched from a separate subtree. The reduced iteration speed due to lower
density is not expected to be signi�cant, if value sizes are kept reasonably low (e.g. storing
cryptographic signatures instead of image thumbnails), but no benchmarking was performed.

4.3.3. Message type

As previously explained in Section 2.3.1, the internal nodes of a B𝜀-tree contain bu�ered
messages. In the B𝜀-tree storage stack, a single B𝜀-tree can only have one message type, i.e.
messages of di�erent message types can not be mixed inside a single tree. A message type is
de�ned solely by a merge operation, which is used to merge messages intended for the same
key, and an application operation, which enacts the encoded change on local data.

Because some read-modify-write operations can be translated into a single message insertion
with a custom message type, the chosen message type and its operations are an essential part
of an e�cient data organisation scheme.

Following an object data write operation, the object metadata should be updated to re�ect the
prior write. Concretely, this means an update of the modi�cation time and potentially its size
as well, if the write increased the total object size.

The modi�cation time is updated to the current system time after a write operation has
completed, or when it aborts with an error. If this metadata update is delayed (e.g. if the current
thread is interrupted), a concurrent write to the same object could set the modi�cation to a
later time, only to be reset back to an earlier time when the delayed thread resumes.
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This inconsistency can be resolved by specifying a custom merge behaviour for messages that
set the modi�cation time: if both messages specify a modi�cation time, choose the maximum
of both, i.e. the later time.

The object size is intended to store the largest byte o�set previously written to, but conditionally
updating the object size after a write operation would require knowledge of the current object
size, to determine if the current write would alter it. This inclusion of a mandatory read would
impose a lower limit on the completion time of a write operation, and counter the advantage
of using a write-optimised data structure.

This represents a read-modify-write operation5 which can be optimised to a single message
insertion if the merge operation is de�ned as the maximum, similarly to the modi�cation
time.

4.3.4. Separate metadata B𝜀-tree

# Metadata tree

- Foo|object-id -> 42

# Data tree

- 42|0 -> [...]

Listing 4.8: Multiple trees

# Single tree with prefixed subtrees

- Meta|Foo|object-id -> 42

- Data|42|0 -> [...]

Listing 4.9: Single tree with pre�xes

The data and metadata subtrees can be split into two separate trees (Listing 4.8), or merged
together into a single tree (Listing 4.9). This choice a�ects performance properties of the object
store, as well as future extensions and optimisations:

Disjoint subtrees
The possible key sets of each merged subtree must be disjoint to maintain unambiguity
regarding which subtree a key is a member of. Two methods of ensuring disjointness are
prepending unique �xed values to each key of each subtree, or de�ning gaps of invalid
keys in one subtree, which are then inhabited by the other subtrees.

Space usage of prefixes
With pre�xed subtrees, every key-value pair of the subtree stores a redundant copy of the
pre�x. For large chunks, this overhead is negligible, amounting to only 8MiB overhead
in key-value pairs for 1 TiB of object data for a chunk size of 128 KiB and a single-byte
pre�x.

Mixed message types
Unfortunately, di�erent message types can currently not be mixed in a single B𝜀-tree,
which prevents the mixed usage of message types optimised for a speci�c subtree.

Di�erent storage pools per tree
By backing the di�erent trees of an object store with di�erent storage pools, di�erent
storage media could be con�gured, so that the object store uses one set of media for
metadata, and another for data.

5Where the modify step compares the current value, and only conditionally modi�es it
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Per-tree overhead
Cache pressure would be slightly reduced if a large amount of concurrent object stores
with only one tree are used, because the amount of root nodes is reduced from two/three
to one.

Consistency
With a future extension for per-dataset synchronisation, the assumption that every tree
is written back to disk at the same time may no longer hold. If the entire state of an
object store is contained in a single tree, it will remain consistent, but if it is spread across
multiple trees, and the system crashes after writing back only one of multiple trees, the
resulting object store may be inconsistent.

Snapshots
Because the existing snapshot mechanism of the B𝜀-tree storage stack operates on single
datasets/trees, o�ering snapshots for single-tree object stores would be easier than having
to coordinate snapshots of multiple trees.

Two separate B𝜀-trees are chosen to allow for the di�erent message types described in Sec-
tion 4.3.3, which are essential in providing consistency under concurrent operation, and
implementing metadata updates without read-modify-write cycles.

4.3.5. Key-value encoding format

The previous key-value listings used a symbolic notation for readability, with abstract key
elements separated by pipe characters, but the B𝜀-tree storage stack uses variable-length byte
sequences internally, which entails an encoding scheme for each symbolic key and value.

Fixed metadata keys are indexed simply by the object’s name, whereas custom metadata is
indexed by concatenating the object’s name, a zero byte, and the metadata key. As a result,
object and metadata names are restricted to not contain bytes with a value of zero. Object
data chunks are always indexed by a 12-byte key, where the �rst 8 bytes constitute a 64-bit
unsigned object identi�er in big-endian byte order, and the remaining 4 bytes represent the
chunk identi�er, which is similarly a 32-bit big-endian unsigned integer. The byte order is
essential in ensuring that logically sequential chunks are also sequential in the B𝜀-tree (and
thus iteration order).

4.4. API design

The functionality described in Section 4.1 needs to be exposed to the library user in a manner
that is simultaneously convenient and performant, while favouring safety by design over
options which depend on the user’s careful usage for safe operation.
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4.4.1. ObjectStore API

The primary entrypoint of the object storage extension is the ObjectStore structure, which is
opened from a Database, as shown in Listing 4.10. A single B𝜀-tree storage stack database can
hold multiple object stores, each with a di�erent unique user-provided name.

Once constructed, an ObjectStore can be used to list ranges of objects, or to work with
individual objects. There is no need to explicitly create an object store before opening it, and
although it is possible to close a previously opened object store, this is usually unnecessary.

1 struct ObjectStore {

2 data: Dataset,

3 metadata: Dataset,

4 ...

5 }

6

7 let store = database.open_named_object_store(b"images")?;

Listing 4.10: ObjectStore API

4.4.2. Object API

An object is uniquely identi�ed by its original key. As most operations involve the data subtree,
which is indexed by the object identi�er, it is cached to avoid an unnecessary lookup per
operation. A simpli�ed version of the Object type can be found in Listing 4.11.

1 pub struct Object {

2 key: Vec<u8>,

3 id: ObjectId,

4 // ...

5 }

Listing 4.11: De�nition of Object

Operations on an Object can only be performed in conjunction with an ObjectStore, because
the datasets making up an object store are held by the ObjectStore struct. Multiple variants
of association between ObjectStore and Object were considered and implemented, as each
comes with its own advantages and drawbacks:

4.4.2.1. Unchecked keys

The Object key could be passed directly to an ObjectStore for every operation, shifting the
responsibility of matching up keys with the object stores in which the object exists to the user.
An example of this approach can be found in Listing 4.12.

Although some mismatches can be caught at runtime, e.g. on deletion of a non-existing object
or when reading from an object located in another object store, other operations will lead
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1 // Create an `Object` key for the object `foo` in `object_store`
2 let foo = object_store.open(b"foo")?;

3

4 // Write "bar" to byte offset 42

5 object_store.write_at(foo, b"bar", 42)?;

6

7 // Object-ObjectStore mismatch is possible, with undefined consequences,

8 // as `foo` only exists in `object_store`, not in `wrong_object_store`
9 wrong_object_store.write_at(foo, b"this will break something", 21)?;

Listing 4.12: Example usage of unchecked object keys

to unintuitive consequences, such as attempts to write to an object which only exists in a
di�erent object store. While it would e�ectively prevent this issue, an additional check for
object existence on every write operation would contradict the focus on write optimisation. A
mismatch between object key and object store is always considered a logic error, and there are
no supported usecases where a mismatch is useful or necessary.

4.4.2.2. Checked keys

Instead of validating e.g. object existence on every write operation, object keys could hold a
tag corresponding to the object store. This tag could be the full name, a hash of it for �xed
space usage, or simply an incrementing session-unique counter. On every operation, the object
store’s tag would then be compared to the tag of the key, and the operation is aborted with
an error or a panic if there is a mismatch, potentially causing the entire process to halt if the
panic is unhandled.

These runtime checks must execute on every operation while enabled, adding extra cost even
to correct usage, while burdening the user with having to decide if and how to react to these
logic errors. If implemented with conditional compilation, it would be possible to keep the
safety feature on during development, but disable the additional memory and time cost for
deployment, without having to alter the user’s code.

If manual construction of object keys is permitted, these precautions do not necessarily prevent
unde�ned behaviour, as the user could still construct a key with a mismatched tag. Further,
this variant can at best throw an error during runtime, and may still miss certain conditional
code paths, potentially resulting in logic errors during deployment after the safety feature
was disabled, if those code paths are only executed under very speci�c circumstances. Static
guarantees should be preferred where possible, so that invalid associations are either not
possible by design, or detected at compile-time.

4.4.2.3. Object handles

An object handle carries a unique identi�er for the referenced object, as well as a reference to the
ObjectStore it was created from. Future operations are then invoked from the ObjectHandle
itself, which implements them by using the stored references, as demonstrated in Listing 4.13.
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This neatly maps onto many usecases of an object, statically ensures the object handles can
not outlive the store, and prevents operating on an object with a mismatched object store.

In this variant, object handles are only obtainable from the object store the object exists in.

1 struct ObjectHandle<'store> {

2 store: &'store ObjectStore,

3 object: Object

4 }

5

6 let (obj, info) = object_store

7 .open_object(b"foo", StoragePreference::NONE)?;

8

9 // info contains modification time and size

10

11 obj.write_at(b"bar", 42)?; // Write "bar" to byte offset 42

Listing 4.13: Example usage of object handles

4.4.2.4. Object handles with unchecked construction

As a combination of both previous approaches, a function for unchecked construction of object
handles is provided, a�ording the �exibility of unchecked keys when required, while retaining
the convenience and safety of object handles when constructed directly during opening or
creation of an object.

Because this unchecked construction mechanism allows the creation of an ObjectHandle to
an object which exists in a di�erent ObjectStore, and subsequent use of that handle may
result in data corruption, the user still needs to be careful when mixing objects from di�erent
ObjectStores. However, this increased vigilance is only required when manually constructing
ObjectHandles, not for automatically associated handles. As mistakes can only be made during
creation instead of on every use, this approach limits the code sections which require additional
auditing, when compared to the previous unchecked approach.

4.4.2.5. Discussion and Decision

Object handles are more convenient to use than unchecked keys, by avoiding the need of re-
peatedly passing the object information on every operation, but additionally prevent dangerous
logic errors involving mismatched ObjectStores with objects from other stores, and simplify
the caching of intermediate information to reduce lookups. Checked keys add avoidable over-
head to catch logic errors, but never as early as the object handle variants, which avoid the
mismatch by design.

The ObjectHandle construct is most suited for cases with clear-cut lifecycles of objects, where
an object is opened or created, a number of operations are made, and the object is then deleted
or closed. It is less compatible with more complicated lifecycles, especially externally de�ned
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ones such as within a FUSE6 �lesystem. FUSE demands a stateful interface, where open objects
are represented to the calling party as �le descriptors. This requires keeping a mapping of
open objects, to be closed at the client’s convenience, which would require holding the inner
ObjectStore reference of an ObjectHandle for an externally de�ned period. This makes it
non-trivial or impossible to prove to Rust’s borrow checking mechanism that an ObjectHandle

is never used after its ObjectStore is destroyed. As the implicit lifecycle of unchecked keys
is not managed or checked by the Rust compiler, they are better suited for such complicated
lifecycles.

Safely-created object handles would be unacceptably restrictive as the only available inter-
face, unnecessarily hindering the implementation of plausible usecases involving complicated
lifetimes. With the addition of unchecked handle construction as an escape mechanism, the
advantages of both approaches can be combined, letting the user trade safety for �exibility
when required.

4.4.3. Cursor

Many external APIs are built around a streaming IO interface, instead of the batchedWrite and
Read interface provided by the B𝜀-tree storage stack. A streaming interface for object handles
is presented, to facilitate interoperation with other streaming interfaces, without requiring the
user to manage a bu�er manually at every call-site.

Constructed via ObjectHandle::cursor, the ObjectCursor maintains an internal position and
dispatches calls to the standard library’s Read and Write interfaces to the underlying object via
Read and Write. The internal position can be modi�ed via Rust’s Seek interface. Because it is
built on top of Read, read operations via the cursor perform zero-�lling if used with sparse
objects. If the cursor is used primarily with small operations, e.g. reads of a single byte, usage
of Rust’s IO bu�ering facilities (BufReader and BufWriter) is essential to performance.

The naming is adopted from database terminology and matches Rust’s std::io::Cursor7,
which provides similar functionality for otherwise random-access byte sequences.

1 let obj = store.open_object(b"example")?;

2 // create a new cursor, initialised to the beginning of the "example" object

3 let mut cursor = obj.cursor();

4

5 io::copy(&mut input, &mut cursor)?;

6

7 // jump back to the beginning of the stream

8 cursor.seek(SeekFrom::Start(0));

Listing 4.14: Example usage of ObjectCursors

6Filesystem in userspace (FUSE) is an interface which allows the implementation of custom �lesystems without
editing operating system code.

7https://doc.rust-lang.org/std/io/struct.Cursor.html
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4.5. Summary

The presented object store supports the essential operations Create, Read, Write, and Delete,
and a handle-based interface with Open and Close. Additionally, a user can wait until all
changes have been written to persistent storage with Sync, list objects with List, change the
key of an object with Rename, and query �xed object metadata with the Status operation.
Custom metadata can be queried, listed, and set or deleted by name.

Two optional operations have not been implemented: Link/Unlink and Copy. The implemen-
tation of Link/Unlink would require only minor changes to the metadata tree. A naive full
data copy can be implemented on top of the exposed API without any changes, even for sparse
objects, but an e�cient implementation of Copy with data sharing between all instances of an
object, and chunk-level copy-on-write semantics is left for future work.

In conclusion, the object store’s data and metadata is organised as follows: Data is split into
chunks, which are potentially non-contiguous (sparse) and indexed by an object identi�er via
a level of indirection, instead of using the full object name. The object identi�er is packed
into a single key-value pair alongside other �xed metadata: the modi�cation time and object
size. Fixed metadata is interleaved with custom metadata, which are user-provided per-object
key-value pairs. Each object store uses two datasets (B𝜀-trees) to organise metadata separately
from object data, in order to improve metadata locality.

The �nal layout and a subset of the API (sparse object writes, metadata, cursor writes) are
demonstrated below: Listing 4.15 uses the public object API to create the two datasets shown
in Listing 4.16. Matching colours are used to mark the origin of key-value data in the function
arguments.
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1 let os = db.open_named_object_store(b"example", StoragePreference::NONE)?;

2

3 // Create a new object and write to two non-contiguous locations

4 let obj1 = os.create_object(&[10, 10, 10])?;

5 obj1.write_at(&[42, 43, 44], 10);

6 obj1.write_at(&[1, 2, 3, 4, 5], 500 * 128 * 1024);

7

8 // Add a key-value metadata pair, with key "foo" and value "bar"

9 obj1.set_metadata(b"foo", b"bar")?;

10

11 // Use the cursor API on another object

12 let obj2 = os.create_object(&[20, 20])?;

13 let mut cursor = obj2.cursor();

14 // Each write advances the internal position ...

15 cursor.write_all(&[1, 4, 3, 2])?;

16 cursor.write_all(&[5, 6, 7, 8])?;

17 // ... which is also exposed via the standard library's Seek interface

18 cursor.seek(SeekFrom::Start(1))?;

19 cursor.write_all(&[2, 3, 4])?;

Listing 4.15: Demonstration of object creation, and (meta-)data write operations

1 // Metadata dataset:

2 // Fixed metadata for an object with the key [10, 10, 10]

3 [10, 10, 10] -> [0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 232, 3, 0, 0, 0, 0, 41, 248, 251, 96,

↩→ 0, 0, 0, 0, 144, 186, 171, 49]

4 // Custom metadata for the same object, for metadata key [102, 111, 111] (foo),

5 // with value [98, 97, 114] (bar)

6 [10, 10, 10, 0, 102, 111, 111] -> [98, 97, 114]

7 // Fixed metadata for the object [20, 20], whose object id (first 8 bytes)

8 // is one larger than that of the previous object

9 [20, 20] -> [1, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 41, 248, 251, 96, 0, 0,

↩→ 0, 0, 48, 202, 171, 49]

10

11 // Data dataset:

12 // Two chunks of the first object, both with an object id (first 8 bytes) of 0

13 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] -> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 42, 43, 44]

14 // Chunk 500 (1 * 256 + 244 = 500), far after the first chunk but sparsely allocated

15 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 244] -> [1, 2, 3, 4, 5]

16 // First chunk of the object with an id of 1

17 [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0] -> [1, 2, 3, 4, 5, 6, 7, 8]

18 // Object id counter (\x00oid), storing the most recent id of 1 in little-endian

19 [0, 111, 105, 100] -> [1, 0, 0, 0, 0, 0, 0, 0]

Listing 4.16: List of key-value pairs from the metadata and data datasets, after the execution of
Listing 4.15
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Chapter 5.

Tiered storage

As described in Section 2.2, tiered storage systems can combine the advantages of heterogeneous
storage devices without data duplication (which would constitute caching), and the decision to
move data between storage tiers can originate from an automated policy, or the user/client
application.

Considering that the design and evaluation of migration policies is a research problem on its
own, as described in Section 3.2, this work focuses on statically-assigned tiered storage. More
sophisticated allocation and migration processes can still be built on top of a static system,
and per-object custom metadata can be used to track application-level usage. An application
background process could slowly migrate old objects based on their age and most recent
access.

5.1. Division into storage classes

There are di�erent properties in which storage media can di�er from another, often with
inter-dependencies. Among them are:

Capacity
The amount of data which can be stored on a medium. With a �xed dataset, this directly
determines how many devices are necessary.

Throughput
How much data can be read or written per device over a limited timespan. This is often
strongly dependent on the access mode, e.g. block size and access pattern.

Access latency
The time between requesting a storage operation and its ful�lment. Similarly to through-
put, this can vary greatly with the access mode used.

Optimal access pattern
The order of access, e.g. sequential block access or apparently random1, will have di�erent
impacts on throughput depending on the device type (SSD, HDD, tape, etc.).

1here: too unpredictable for the disk controller/operating system to correctly detect a pattern
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Optimal granularity of access
Due to the internal structure of a device, it may be particularly suited to requests of
certain sizes. Some SSDs can be reformatted to use di�erently sized logical blocksizes,
with di�erent performance characteristics.

Concurrency
The number of simultaneous operations a device can concurrently process. To fully
take advantage of a device with concurrency, an application may need to submit many
operations at once, instead of waiting for the previous operation to �nish.

Backing storage type
A �ash-based storage device may need special procedures, such as communicating
unused areas of storage to the device (trimming). Other peculiarities might be lack of
wear levelling on less sophisticated �ash storage devices, or the use of shingled magnetic
recording on a hard drive. Although these circumstances will be re�ected in the other
properties, knowledge of the underlying cause can allow for special handling by a storage
system.

On-device cache
The type, capacity, and speed of any caches on the storage medium a�ect burst latencies.
Some SSDs use a portion of their capacity in a faster mode as a write cache.

On-device storage controller
Di�erent storage controllers may exhibit di�erent behaviour when confronted with
the same operations, resulting in a di�erent overall system behaviour. Di�erences
could include garbage collection strategies, thermal throttling behaviour, or readahead
parameters.

Redundancy
Although loss of a single storage medium is often handled by the host system, a hardware
RAID setup might qualify as a single logical device with some data redundancy.

Chance of successful disaster-recovery
In the case of a failed storage device without redundancy, recovery chances and their
cost can factor into their suitability for storage of important data.

Data durability
The durability of data at rest is of particular importance for long-term archival. Error
correction in controller memory and write caches could also reduce the risk of corruption
during recording.

Software aggregations of storage media, such as mirrors, stripes, and parity constructs, also
have these properties, which are partially in�uenced by the properties of their constituent
devices, but also determined by implementation tradeo�s.

By measuring the properties of each storage medium, and then every aggregation, they could
be placed in a high-dimensional space of tradeo�s, and then picked by a sophisticated selection
algorithm for their strengths and avoided for their weaknesses. This would require reliable
(preferably automated) measurements, a well-tuned tradeo� function, and knowledge of the
requirements of each user. Some of these properties can change by usage, and would need to
be tracked or re-measured by the storage system. For example, the throughput of a hard disk
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can be in�uenced by the addressed cylinder, and the allocation strategies of a storage controller
can change as the stored data approaches capacity.

While such a complex system would have the potential of outperforming one with less sophis-
tication, its implementation is not realistic in this context, and perhaps not even desirable, if
most of the potential can be achieved with less complexity.

Despite the speed of a storage device being very multi-faceted, a small and discrete one-
dimensional trade-o� space was chosen due to its simplicity, both in implementation, client
development, and deployment con�guration. Speci�cally, the user or system administrator is
expected to manually form sensible aggregations, and then classify devices and aggregations
into at most one out of four storage classes. Devices in lower storage classes are generally
expected to exhibit less latency, higher throughput, and diminished capacity, when compared
to devices from higher storage classes. This ordering expectation is not veri�ed by the database,
and its ful�lment is not required for correctness, only for performance. Furthermore, the
devices of each class are expected to be homogeneous, as the database does not di�erentiate
between devices within a single class.

This reduction of several attributes into one ordering makes the assignment into classes unclear
if only one or a few of these ordering expectations are ful�lled, e.g. with a device exhibiting
higher throughput but also higher latency than the devices of an adjacent class.

This shifts the e�ort and complexity of measurement and selection into the user’s or admin-
istrator’s responsibilities, who are assumed to be more competent at reasoning about the
combined performance of the system and application than a naive implementation of the
complex automatic tradeo� would be.

Applications can then specify a one-dimensional preference for a particular storage class, and
the storage system will try to ful�l that preference or fall back to a default if no preference was
given.

The choice of four di�erent storage classes is a simpli�cation in many ways, and assumes
falsely that the other properties remain uniform in each storage class, unable to di�erentiate
based on other properties not included in the coarse ranking.

5.2. Cross-class disk addressing

Tree nodes are referred to by their disk o�sets, previously comprised of a 12-bit disk identi�er,
and a 52-bit block o�set relative to the start of that disk. With the introduction of storage
classes, disk o�sets also need to identify the storage class in which the disk resides. 2 bits are
repurposed from the disk identi�er to identify the referenced storage class, resulting in a new
disk o�set layout as shown in Figure 5.1.

An alternative representation might retain the 12-bit disk identi�er, mixing di�erent storage
classes and resolving the storage class implicitly. This would allow moving a disk between
classes without breaking existing references, but it would require per-disk lookups in the
storage pool con�guration to determine the storage class of a block reference.

Shrinking the disk identi�er from 12 to 10 bits reduces the upper limit on top-level vdevs
in a single storage class from 212 = 4096 to 210 = 1024, which should still far exceed the
requirements of any realistic deployment, as the risk of data loss increases with larger stripe
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Figure 5.1.: Layout of block o�sets

con�gurations, and each referenced top-level vdev can itself be a mirror or parity vdev instead
of a bare disk.

The B𝜀-tree storage stack currently has no support for any form of storage pool recon�guration:
once a database has been created, the topology of the backing vdevs can not be altered safely.
This lack of �exibility manifests in the tiered storage extension in the form of �xed disk
identi�ers. Simply swapping two top-level vdevs in a storage class will invalidate all existing
references to the contained blocks, resulting in unreadable data or corruption. This is not a
permanent disadvantage, as a redirection table could be added into the root tree, keeping stable
identi�ers for all previously seen devices.

5.3. Configurable allocation strategy

A client application might attempt to use more storage classes than are available on the host
system, or assume con�icting properties about a given storage class (e.g. that class 1 is always
backed by SSDs). The used storage classes should be con�gurable, because the client developers
may make di�erent tradeo�s than the deploying parties.

Another adjacent problem can be found in the handling of allocation failure: If a client applica-
tion requests an allocation in an already �lled storage class, the storage stack could immediately
deny the request, or ful�l the request by allocating on a di�erent storage class than requested.
Unfortunately, the B𝜀-tree storage stack currently performs no space accounting, i.e. there is
no information about which vdevs (and thus storage classes) still have free space remaining. As
a result, allocation attempts on full storage classes result in the futile traversal of all allocation
bitmaps, which is a very expensive operation. Falling back to other storage classes on an
allocation failure would only amplify this cost, at least until space accounting is implemented.
By encoding the fallback behaviour into the allocation strategy, this tradeo� can be made by
the user, if necessary.

Both of these issues are addressed with the introduction of a con�gurable allocation strategy,
which takes the form of a list containing a maximum of four nested lists, each with at most
four integers in the range of zero to three (inclusively). Each position in this list, and each
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Preference Primary Fallback 1 Fallback 2

0 0 0 0

1 1 1 1

2 2 2 2

3 / / /

Allocation strategy: [[0, 1, 2], [1, 2], [2], [2]]

Faster

Figure 5.2.: An example of class remapping and fallback con�guration by specifying an alloca-
tion strategy

integer in the nested lists, corresponds to one of the four storage classes. When the B𝜀-tree
storage stack needs to allocate a tree node on a given storage class, the nested list at the
corresponding position in the allocation strategy is used to inform the order of allocation
attempts. For example, the allocation strategy [[0], [1], [2], [3]] could be called an
identity strategy without allocation fallback, because each nested list contains contains only
the class corresponding to its position.

If an application only uses a �xed set of storage classes, the allocation strategy can map those
�xed classes onto deployment-speci�c classes. Similarly, if the application expects four storage
classes to be available, but the host system only has two di�erent types of storage device,
multiple application-level classes can be aliased to use the same host-level class.

In Figure 5.2, a hypothetical client application uses all four storage classes, but the host system
only has three classes available, and classes 0 and 1 are of comparatively low capacity. The
administrator could reassign a few devices from class 2 to class 3, but that might result in
unbalanced utilisation, if the application does not access both classes equally. One of the classes
might �ll up before the other, potentially halting the entire system even though there still is
free space available. Assuming striped access, the application would additionally forfeit the
bene�t of increased concurrent access provided by having more devices to distribute operations
across.

By using the allocation strategy [[0, 1, 2], [1, 2], [2], [2]], allocation requests for class
0 will be ful�lled by trying to allocate on class 0 �rst, but falling back to classes 1 and 2 if class
0 was full. Similarly, failed requests for class 1 will fall back to class 2. Requests for classes 2
and 3 will be allocated on class 2, without any fallback.

This remapping/resolution occurs when a block is allocated, and only the resolved class is
encoded into the storage address to ensure that changes to the remapping table do not break
block references.

5.4. Block allocation

With a storage layer capable of addressing multiple storage classes, and a tree type supporting
cross-class and cross-device block references, the allocator needs to choose among all devices
of all storage classes when a node is about to be written to disk. The goal of each allocation
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Figure 5.3.: A fully populated tree with a fanout of four. The internal nodes are grouped in
green, and the leaf nodes are grouped in red.

heuristic is to optimise future accesses to the allocated blocks, based on predictions about
future storage layer requests.

A block allocation heuristic determines multiple important characteristics of the whole sys-
tem:

Immediate e�ects
Allocations are triggered during write operations, so naturally the choice of storage class
to allocate blocks from in�uences the completion time of that write operation. Choice of
a class with lower access latencies bene�ts small writes, whereas larger writes bene�t
from higher throughput, but these are not necessarily constant in a multi-user system
such as a storage server. In the event of resource contention, an operation may complete
sooner even if the allocator selects a lower class than requested, if that class is currently
underutilised.

There is also a risk of uneven block allocation causing allocation failures due to one layer
being out of free space, when other classes might be able to accommodate the allocation.
Falling back to lower or higher classes in such an event allows continued operation, at
the cost of potential performance degradation later.

Delayed consequences
The time required to read back a block from storage depends on the storage medium it
was written to, which is in�uenced by the storage con�guration and allocation strategy.

With trees as the primary block organisation method, few block requests are entirely
isolated from another. For read access to infrequently used values, a traversal from
root to leaf may require fetching multiple blocks. If this path happens to cross storage
class boundaries, the total duration of the critical path depends not only the storage
con�guration of the �nal node, but also that of every intermediary node. If, for example,
fetching a value residing on fast solid-state storage required fetching an internal node
from a suspended spinning disk, the total access time would not conform to the access
latency expectations of solid-state storage. It is thus important to keep the entire access
path as fast or faster than requested, instead of only the �nal node.
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Figure 5.4.: Distribution by subtree

5.4.1. Allocation by tree layer

This heuristic predicts that future accesses are more likely to require an internal tree node,
than a leaf node. As the internal tree nodes are needed during every access of any leaf node2,
and written back frequently when bu�ering messages, allocating the internal nodes on a
faster storage class, and the leaf nodes on a slower storage class, can reduce the duration of
background Sync operations and accelerate the traversal of uncached tree paths.

The average read completion time for point queries is expected to improve over exclusive use
of the slower class, but the throughput of larger queries is still limited to that of the slower
storage devices.

The reading bene�ts can only be realised for uncached nodes, but the internal nodes are also
likely to be present in the object cache, partially negating the advantages of this distribution
scheme with usecases where most of the internal nodes are cached. Additionally, the ratio of
leaf nodes to internal nodes follows from the fanout (number of child nodes for internal nodes):
Figure 5.3 depicts a fully populated tree with a fanout of four, which contains 16 leaf nodes and
�ve internal nodes at a ratio of 16

5 = 3.2. As the fanout is increased to optimise the performance
of uncached random point queries, which depend on a high fanout to ensure a low tree depth,
this ratio approaches the fanout itself. As an example, given a fanout of 100, the leaf nodes
would outnumber the internal nodes by a factor of nearly 100. If the capacities of both storage
classes do not match this ratio, under-utilisation will occur. The user would have no means of
increasing utilisation, as the fanout is not con�gurable.

5.4.2. Allocation by key priority

The previous method treated all keys (and by extension: objects) equally, making a prediction
based only on the type of node being allocated. In contrast, this heuristic assumes that future
access will not be uniform across the key space, but rather that subsets of keys will be accessed
more often than others. Instead of attempting to automatically determine these subsets, the
prioritisation is left to the invoking software. The developers of client software are already
aware of the domain-speci�c meaning of objects and their keys, and can make a prediction
regarding their access patterns.

This user-provided prioritisation could be useful to e.g. allocate media objects based on
expectations about access frequency from similar objects, or to allocatemore frequently accessed
sections of an object, e.g. the index of a publicly served zip archive, on an SSD, while keeping

2Except when the tree consists only of the root node
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the bulk of the archive on cheaper storage. Even without keeping statistics about past accesses,
an image thumbnail in a gallery could be expected to be accessed more frequently than the
corresponding full image.

Because each node may contain multiple keys with di�erent priorities, honouring each priority
exactly is infeasible if nodes are to be allocated in sequential blocks. If the con�icting priorities
of each key can not be ful�lled exactly, the allocator instead selects a single class to satisfy all
requirements, by assuming that an upgrade to a faster class is always acceptable for the client.
If no preference was speci�ed for any of the keys, the allocator falls back to a global default
storage class.

Additionally to the leaf nodes, data pertaining to a speci�c key may also be found in the
form of bu�ered messages in the internal nodes, resulting in key-value pairs potentially being
distributed across nodes in the entire access path. Because every read operation requires
traversal from the root, allocating only the leaf node on the requested storage class would be
contradictory to the goal of accelerating the entire access, when the internal nodes are not
cached and need to fetched from a slower class.

To prevent such situations, the storage preferences of an access path must be monotonically
slower, if traversed from the root. By accounting for the storage preferences of child nodes, this
prevents a transition from a slower storage class to a faster storage class during traversal.

Compared to allocating all nodes on a slower class, this might result in some operations slowing
down if the access path crosses storage class boundaries and the overhead of querying di�erent
classes (e.g. wakeup time, loss of request-global IO scheduling, etc.) outweighs the cost of
fetching more data from the slower class.

Due to the greater �exibility and larger predicted performance potential of this allocation
heuristic compared to allocation by tree layer, the remainder of this chapter is concerned with
de�ning and implementing node allocation by key priority.

5.5. Storage preferences

Due to the mixture of di�erently prioritised insertions in nodes, and the fallible nature of
allocation from exhaustible resources, requests for speci�c storage classes can not always
be ful�lled. This is represented internally, as well as in the public API, by using storage
preferences instead of speci�c storage classes.

Each of the four storage classes can be speci�ed as a storage preference, indicating an application
request that the associated key-value pair should be allocated on the corresponding storage
class or a faster class.

To indicate a lack of preference, storage preferences allow an additional value, here called None.
In contrast to falling back to a global default storage class whenever the user fails to provide
a preference, a distinct None value can losslessly represent that non-decision. This detail is
relevant when changing the default storage class, as otherwise the database would not be able
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to distinguish between data allocated intentionally on the previously default storage class, and
data allocated without any preference3.

The resulting possible values of a storage preference are 0, 1, 2, 3, and None.

P = {0, 1, 2, 3,None} (5.1)

To resolve a con�ict between multiple preferences, a total order of strictness is de�ned over P
with the binary relation 𝑎 ≺ 𝑏, where 𝑎 is a stricter preference than 𝑏. The integer preferences
retain their integer ordering, and every other preference is stricter than None.

≺ ⊂ P × P (5.2)
≺ = {(𝑎, 𝑏) | 𝑎, 𝑏 ∈ [0, 3] ∧ 𝑎 < 𝑏} ∪ {(𝑥,None) | 𝑥 ∈ [0, 3]} (5.3)

Akin to 𝑚𝑖𝑛(𝑎, 𝑏), 𝑎 f 𝑏 is de�ned as the stricter of the two preferences. As an example of
using the f operator, a con�ict between 1 and 3 is resolved to 1f 3 = 1, a con�ict between None
and 3 is resolved to None f 3 = 3. Only a con�ict between None and None results in None.

𝑎 f 𝑏 =

{
𝑎 if 𝑎 ≺ 𝑏

𝑏 otherwise
(5.4)

Similarly, the
c

operator is an equivalent to min𝑥∈𝑆 𝑥.
c

𝑆 is recursively de�ned as the strictest
preference in the set of preferences 𝑆, with the preference of an empty set de�ned as None.
The selection of 𝑥 ∈ 𝑆, and thus the order of reduction, does not a�ect the �nal result, as f is
both associative and commutative.

k
𝑆 =

{
None if 𝑆 = ∅
(
c

𝑆\{𝑥}) f 𝑥 if ∃𝑥 ∈ 𝑆
(5.5)

If the �nal con�ict resolution is None, a con�gurable global default storage class is chosen,
otherwise the corresponding storage preference is selected. The remapping and fallback process
described in Section 5.3 is applied to the �nal preference during block allocation.

Explicit storage classes are not exposed to the user, and are only used internally after allocation
has succeeded.

5.6. Preference associations

When inserting a message for a particular key into a tree, the caller additionally passes a storage
preference for that key-message pair, which is stored alongside it. When a message application
results in the creation of a key-value pair in a leaf node, that storage preference is preserved
alongside the new key-value pair.

While this representation technically allows for a single key to have di�erent preferences when
spread into multiple bu�ered messages, and the interface can not prevent this from occurring,

3For example, if the administrator changes the default storage class due to a lack of free capacity on the previous
default class, reallocations of a tree node �lled with None preferences would be using the new default, whereas
they would continue using the old default if Nones were instead eagerly resolved.
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mixed storage classes for a single key are deemed unnecessarily di�cult to predict, and keys
(but not objects, as will be explained in Section 5.8) should be treated by users as having only
one storage preference.

To allocate the blocks for storing a tree node, the data management layer queries the storage
preference of that node. Although the actual implementation avoids excessive recalculations,
at an abstract level each node can be thought of as not storing a storage preference itself, but
rather recalculating the preference recursively from its contents.

Depending on a node’s location inside the B𝜀-tree, it can either be an internal node, or a leaf
node:

𝑃node (𝑛) =
{
𝑃leaf (𝑛) if n is a leaf node
𝑃internal (𝑛) if n is an internal node

(5.6)

A leaf node 𝑙 consists of key-value pairs (entries(𝑙)), each of which carries a storage preference
(queried with 𝑃entry (𝑒)). The overall preference of the leaf node is de�ned to be the strictest
preference of all entries.

𝑃leaf (𝑙) =
k {

𝑃entry (𝑒) | 𝑒 ∈ entries(𝑙)
}

(5.7)

An internal node 𝑖 consists of one child bu�er for each of its child nodes (children(𝑖)). Each child
bu�er 𝑏 contains a reference to its corresponding child node (child (𝑏)), and a variable amount
of bu�ered messages intended for that child node (messages(𝑏)). Each child bu�er’s preference
is determined by the strictest bu�ered message, and the preference of its corresponding child
node, as a node must not have a preference which is less strict than that of any of its children.

𝑃childbu�er (𝑏) =
k {

𝑃message (𝑚) | 𝑚 ∈ messages(𝑏)
}
f 𝑃node (child (𝑏)) (5.8)

The overall preference of an internal node is then de�ned as the strictest preference of all
contained child bu�ers.

𝑃internal (𝑖) =
k {

𝑃childbu�er (𝑏) | 𝑏 ∈ children(𝑖)
}

(5.9)

5.7. Incremental tracking of preference propagation

The computation of 𝑃node (𝑛) would involve all transitive children of 𝑛, a prohibitive cost if any
children are not already cached. Instead of repeatedly calculating the preferences of nodes,
they can be incrementally computed, adjusting a stored preference as necessary for each
operation. Each tree node hierarchically keeps track of its current storage preference. In the
context of storage preferences, tracking by a tree node refers to storing and maintaining a
storage preference appropriate for the contents of that node. Furthermore, upgrading and
downgrading of a storage preference designate a transition to a preference with greater or
lesser strictness, respectively.

Unfortunately, certain operations complicate the tracking process. For example, if a leaf node
𝑙 contains three key-value pairs with the storage preferences 2, 1, and 2, then 𝑃leaf (𝑙) = 1 in
accordance with Equation (5.7). Upon the removal of a key-value pair however, no certain
statements can be made regarding the exact new value of 𝑃leaf (𝑙) without inspecting the
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remaining pairs: if the removed entry had a preference of 1, the new overall preference of 𝑙
will be 2, whereas it would continue to be 1 if one of the entries with a preference of 2 had
been removed. With more realistic leaf node sizes, iterating the internal data structure of a leaf
node on every removal to determine the new storage preference becomes undesirably costly.

To remedy this �aw, a �fth preference state is added internally: unknown, indicating that
the relevant preference is currently not known. The transition into the unknown state is also
referred to as preference invalidation. Instead of eagerly causing an immediate recalculation of
the node’s preference after a removal, the cached preference can instead be set to unknown,
which defers the recalculation until the storage preference is next queried. This mechanism
also avoids unnecessary recalculations, when an invalidating operation is performed repeatedly.
Due to the hierarchical design, the recalculation step of an invalidated node does not have to
recursively scan all of its transitive children, instead inspecting only itself and the preferences
of its direct children.

As the correctness of the implementation of incremental tracking is important for the system’s
performance, the following invariant must hold for any reachable tree state: whenever the
tracked preference of any given node 𝑛 is queried, it must either equal 𝑃node (𝑛), or unknown.

The tracking mechanism is explained next, along with an inductive argument that it upholds
the invariant for all reachable tree states, by starting with the creation of empty components
and discussing every operation that could result in a change to the tracked storage preferences.
The argumentation of each operation’s correctness can assume that the tree state before the
operation ful�ls the invariant, and only reasons about the newly reachable tree states.

5.7.1. Node types

As previously discussed in Section 2.3.1, there are two node types present in a B𝜀-tree: leaf
nodes, and internal nodes. A leaf node contains entries consisting of a key, value, and a storage
preference.

An internal node contains pivots, and one child bu�er for each child node. A child bu�er
contains a reference to the corresponding child node, and the bu�ered messages intended
for the key range of that child. Whereas the leaf node directly tracks its storage preference,
the child bu�ers of an internal node each individually track one preference for the bu�ered
messages intended for their child node.

When the internal node is queried for its storage preference, it has to iterate over its child
bu�ers to select the strictest preference. This is necessary because the node references of a
child bu�er can be updated without noti�cation to the internal node, which could result in
temporarily incorrect preferences if the internal node would cache the overall preference and
the new node pointer necessitates an up- or downgrade of the internal node’s preference. The
e�ects of the following operations in Section 5.7.2 are not discussed for internal nodes, as the
stateful tracking occurs only in their child bu�ers.

Preference propagation The child bu�ers of internal nodes hold references to their respec-
tive child nodes. These references allow (synchronised) replacement, and will be replaced e.g.
when a node is modi�ed in-memory, and then replaced again when that node is written to disk.
Each such reference can be either unmodi�ed, modi�ed, or in writeback.
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An unmodi�ed reference contains a disk address, which encodes the storage class as described in
Section 5.2. This can violate the invariant established in Section 5.7 if the encoded storage class
di�ers from the original storage preference due to class remapping or allocation fallback. Instead
of additionally storing the original preference of each node, this is considered an acceptable
deviation because attempts to allocate on previously full storage classes are likely to fail again,
and allocation failures are excessively expensive until space accounting is implemented.

References to nodes which are modi�ed or in writeback have been altered to additionally hold
a storage preference, which is calculated when inserting new nodes into the data management
layer, and before writing them back to persistent storage.

The B𝜀-tree storage stack already ensures that child nodes are queued for writing before their
respective parent nodes, so that parent nodes can refer to the newly allocated positions of child
nodes instead of their previous locations. This process is reused for incremental preference
calculation, to ensure that the preferences of each child have already been calculated before
the preference of their parent node is queried.

5.7.2. Node operations

5.7.2.1. Creation and loading from disk

In terms of storage preference tracking, empty node creation is the simplest operation.

An empty leaf node is de�ned to have a known storage preference of None, by the empty-set
case of

c
. When a leaf node is loaded from disk, its entries are already iterated over to construct

its internal data structure, during which the strictest preference is determined, and then used
as the cached preference of the new leaf node.

A child bu�er can only be created for an existing child node, whose storage preference can be
retrieved from the corresponding cache reference. As there can be no bu�ered messages yet,
the queried preference can be cached.

When an internal node is read from disk, its child bu�ers retain the cached storage prefer-
ence they were originally written to disk with, obviating the need for any recalculation after
loading.

5.7.2.2. Message insertion

A message is inserted into a leaf node by querying for a value associated with the message’s
key, and then applying the message to the query result (even if it is empty). There are four
resulting combinations:

• There was no value for the key, and the message application did not create a new one:
No change.

• There was no value for the key, but the message application resulted in a value: Entry
insertion.

• There was a value for the key, but the message application removed it: Entry deletion.
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• There was a value for the key, and after message application there is still a value: Entry
modi�cation.

On creation or modi�cation of an entry, the node preference is upgraded to that of the inserted
message if the message preference is stricter, so that there is no entry with a stricter preference
than the node itself.

When a message causes the removal of a key-value pair, the preference of the removed entry is
compared to the current node preference. Because the previous tree state can be assumed to
uphold the invariant, it follows that the preference of the removed entry can not be stricter
than the node preference, leaving equal strictness and lesser strictness as possible comparison
results. If the removed entry had a preference that is less strict than the node preference,
there must be another entry with a stricter preference, and the cached node preference does
not need to be invalidated. Only on removal of an entry with equal strictness is the cached
preference invalidated, because it is impossible to determine with the available information
whether the removed entry was originally responsible for the upgrade to the current storage
preference. Similarly, if the new preference is less strict than the previous preference following
the modi�cation of an entry, the overall preference must be invalidated to allow for downgrades
by overwriting to occur.

The process is simpler for internal nodes and child bu�ers, as insertions can never remove a
message from these node types, and thus only increase the strictness of the node’s preference.
When inserting a message into a child bu�er, its preference is upgraded if the message’s
preference is of greater strictness than the current preference.

5.7.2.3. Split

When splitting a leaf node, a range of its entries is removed and added to a new leaf node. As
the new node is constructed iteratively, its cached preference is tracked during the insertion
of each entry. The cache of the original node, from which those entries were removed, must
be invalidated, because the removed keys may have increased the strictness of the tracked
preference during their original insertion.

When a node is split into two new nodes, its parent node must also split the corresponding
child bu�er into two new bu�ers along the same key ranges. Both resulting bu�ers have an
unknown preference, requiring a scan of their bu�ered messages on the next query for the
internal node’s preferences.

5.7.2.4. Merge

To merge a leaf node with another, the entries of the node with lexicographically greater keys
are appended to the other node. If the preferences of both nodes are known, that of the growing
node can be upgraded if necessary without inspecting each individual message.

When two nodes are merged, their parent node must also merge their corresponding child
bu�ers into one. If the preferences of both bu�ers are known, the resulting preference can
be determined without inspection of the stored messages by selecting the stricter of the two
preferences. Otherwise, the newly merged bu�er has an unknown preference.
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5.7.2.5. Flush

Flushing of an internal node selects a child bu�er, and propagates its messages to the corre-
sponding child node. After this operation, the cached preference of the �ushed child bu�er
needs to be invalidated, because the child bu�er no longer contains any messages, and the
preference of the child node may have been altered by the �ushed messages.

5.7.3. Invariant checking

From the de�nitions of 𝑃node, 𝑃internal , and 𝑃leaf follow these two derivative invariants:

1. During path traversal from the root, the encountered nodes have storage preferences of
monotonically decreasing strictness. In other words: the preference of a parent node is
as strict as or stricter than those of its child nodes.

2. If a cached node preference is available, the node may contain no entries or message
bu�ers with a stricter preference.

They must similarly be upheld for every reachable tree state. As each tree component imple-
ments an uncached and an incremental variant of preference calculation, their results can be
compared and asserted to be equal as a debugging measure, which can help detect the point of
divergence if compared frequently enough.

5.8. Object store API changes

As the B𝜀-tree storage stack is intended to be usable without taking advantage of tiered storage,
the public API has been partially duplicated, adding function variants which allow overriding
the used storage preference. Because objects consist of multiple key-value pairs, individual
chunks of an object can be stored with di�erent storage preferences than the rest, allowing for
the prioritisation of object ranges.

The object handle and cursor API introduced in Section 4.4 have been extended to allow the
speci�cation and overriding of storage preferences without forcing the user to provide the
active storage preference during every operation, as demonstrated in Listing 5.1.
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1 let (obj, _info) = object_store.open_object(b"foo")?;

2 // An `ObjectCursor`, which implements the standard traits Read, Write, Seek

3 let mut cursor = obj.cursor_with_pref(StoragePreference::FASTEST);

4

5 writeln!(&mut cursor, "these changes will be allocated onto the fastest

↩→ possible class");

6

7 cursor.set_storage_preference(StoragePreference::NONE);

8

9 // these writes will be performed with the `ObjectStore`s default preference

10 writeln!(&mut cursor, ...)?;

11 io::copy(&mut stdin, &mut cursor)?;

Listing 5.1: Example of object usage on multiple tiers
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Chapter 6.

Database improvements

Numerous other changes to the B𝜀-tree storage stack are described here, which are not related
to either object storage or tiered storage.

6.1. Leaf node on-disk representation

Although other node types are encoded automatically with bincode1 before being written to
disk, leaf nodes are encoded manually into a format speci�cally designed to avoid a deseriali-
sation step, so that the on-disk data of a leaf node can be e�ciently queried without copying
[Wiedemann, 2018, p.78].

Previously, the format of a packed leaf node matched the structure outlined in Listing 6.1,
storing the number of entries contained in the node, and �xed-size positions and lengths
specifying where the actual key data and value data could be found in the trailing data byte
array. Importantly, the entries in keys and values are ordered identically to their unpacked
counterparts, so that corresponding key and value positions have the same index in their
respective arrays. To retrieve a value for a key, the index of the value location in values can be
located by using binary search for the key via keys.

The following changes have been made, resulting in the new layout described in Listing 6.2:

1. Because keys and values are written into data sequentially, the positions in keys and
values are monotonically increasing, and each key position is immediately followed by
the position of the next entry. Instead of separately storing the length, it can be calculated
by subtraction of two adjacent o�sets. As the last such o�set in the values array has no
succeeding o�set, data_end is added to allow calculation of the last length.

2. 32-bit o�sets and lengths are unnecessarily wasteful considering the maximum node
size of 4MiB. O�sets are now encoded as 24-bit unsigned integers, which still allows for
16MiB node sizes.

3. Instead of iterating the internal BTreeMap of a leaf node four times to create separate
ordered sections of keys, values, and then writing all key data and value data into data

in two passes, the current version only needs two iterations of the BTreeMap to write
interleaved entry information, and �ll the data array.

1A compact binary format for the serde (de-)serialisation framework: https://github.com/bincode-org/bincode
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4. For the addition of tiered storage described in Section 5.6, a single byte of per-key
information is added for every entry.

Despite the added functionality, this new representation is more compact: the metadata cost
per entry has been reduced from 2 ∗ (4 + 4) = 16 bytes to 3 + 1 + 3 = 7 bytes2, resulting in
per-entry savings of 9 bytes.

1 Layout:

2 entry_count: u32,

3 keys: [Data; entry_count],

4 values: [Data; entry_count],

5 data: [u8]

6

7 Data:

8 pos: u32,

9 len: u32,

10

11

12

Listing 6.1: Previous version, using 32-bit
o�sets and lengths

1 Layout:

2 entry_count: u32,

3 entries: [Entry; entry_count],

4 data_end: u24,

5 data: [u8]

6

7 Entry:

8 key_pos: u24,

9 key_info: KeyInfo,

10 data_pos: u24

11

12 KeyInfo: storage_preference: u8

Listing 6.2: Modi�ed version, using 24-
bit integers and additionally
storing per-key information

6.2. Direct IO

When �les are not speci�cally opened with the O_DIRECT �ag3, the Linux kernel routes IO
operations through its own page cache [Bovet and Cesati, 2005, p. 668-671]. When enabled,
subsequent �le operations are no longer performed in bu�ered mode, but as direct IO, which
reduces the amount of bu�er copies on the path from and to the underlying storage device,
and bypasses the page cache logic.

If the application performs additional caching of the contents of a bu�ered �le, as was the
case with the B𝜀-tree storage stack, this can result in data being cache twice. Not only does
this double caching lead to unfair comparisons with single-cached systems, but the higher
utilisation of the Linux page cache could even negatively a�ect other applications running on
the system, which might be more reliant on the page cache. An internally managed application
cache can take advantage of domain knowledge of cache entries, unlike the Linux kernel, which
can not interpret the cached data and is unable to incorporate application-level information
into its decisions.

In order to utilise direct IO, the following rules must be followed whenever the application
interacts with a �le with the O_DIRECT �ag [Mendez and Lührs, 2019, p. 33-34]:

1. The disk o�set of read/write operations must be an integer multiple of the con�gured
block size, i.e. the application can not read/write from/to any arbitrary location of a �le.

2Except for the last entry, where an additional 3 bytes are required for data_end
3Or that �ag is afterwards set via fcntl(2)
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2. The bu�er length of read/write operations must be an integer multiple of the con�gured
block size, i.e. the application can not read/write an arbitrary amount of bytes.

3. The source/destination bu�er of an operation must be allocated at a memory location
with an address that is an integer multiple of the con�gured block size.

The memory alignment requirement has been solved with a custom bu�er type, which ensures
correct alignment and only allows bu�er sizes of integer multiples of the internal block size.
The alignment block size is dependent on the used storage devices, and can be con�gured in
some cases4. The only currently tested block size of the B𝜀-tree storage stack is 4096 B, which
would cause insu�cient alignment for storage devices with a native block size of 8192 B. As the
block size is only de�ned in a single compile-time constant, it appears likely that an adjustment
could add compatibility with 8192 B blocks sizes, but this has not been tested. Until the B𝜀-tree
storage stack gains support for runtime con�gurable block sizes (like ZFS’ ashift parameter),
another workaround could be to disable direct IO on a per-vdev level, although the cost of
aligning in-memory bu�ers is not elided when direct IO is disabled for every vdev.

6.3. Compression

Compression in the B𝜀-tree storage stack occurs for each tree node, by running the encoded
form of a node through a con�gurable compression algorithm. Compression is conceptually
mandatory, but a compression algorithm called None simply returns the input data and thus
performs no compression.

Whereas an object pointer previously encoded the compression algorithm into its type, every
object pointer now carries information on the decompression step necessary to retrieve its
original data, called a decompression tag. Currently, the decompression tag only encodes the
originally used algorithm, the compression level is not required during decompression.

The Zstandard5 compression algorithm has been integrated as a new compression algorithm
with a con�gurable compression level, and is benchmarked in Section 8.2.3.4.

6.4. Synchronisation

Synchronisation refers to the action of ensuring that the logical content of a database corre-
sponds to its physical counterpart on persistent storage, synchronising the blocks on disk to the
value they should have. It is of particular importance in the presence of write caching, which
can occur at multiple levels with the B𝜀-tree storage stack, including the following:

1. The B𝜀-tree storage stack will keep decoded and modi�ed versions of database nodes in
memory.

2. The operating system kernel or �lesystem may separately cache write operations if used
in an asynchronous mode (often the default).

4At least with certain NVMe SSDs, which support namespace reformatting with multiple logical block addressing
formats.

5https://github.com/facebook/zstd
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3. The underlying storage device can have further internal caching.

These layered caches are meant to improve system performance, and allow for short bursts
of operations, with a higher throughput than would be possible for an extended duration.
Simultaneously, because these caches often reside in volatile memory, they represent a risk of
data loss, if e.g. a power interruption leads to a host shutdown. The tradeo� between safety
and performance can be shifted by disabling one or more of these write caches.

As discussed in Section 6.2, the backing database �les are now opened with the O_DIRECT �ag,
bypassing the operating system page cache in favour of the internal caching. Con�guration of
the internal caching behaviour of storage devices is left to the system administrator.

Tree locations To operate on a dataset, the location of its root node is required. This location
is found by �rst following a block pointer from the most recent superblock to the root node
of the root tree, and then retrieving the block address to the root node of the desired tree. It
follows, that a newly opened database can only access changes of a dataset as old as or older
than the most recent superblock.

During extended operation, the userwas previously expected to periodically call Database::sync,
in order to write out all pending changes, and �nally refresh a superblock. Otherwise, the
database will not be able to locate recent versions of its datasets, and no changes will appear to
have been written.

Background synchronisation timer An optional background thread has been added, calling
Database::sync in a con�gurable interval. It can be activated by calling Database::with_sync,
and will use the synchronisation mode of the provided DatabaseBuilder. This sets an upper
bound for the age of lost data, at the cost of additional IO load and locking parts of the database
periodically. Appropriately timed explicit synchronisation calls are still possible, either in
conjunction with or instead of the background timer.

Unfortunately, in its current state, the B𝜀-tree storage stack always reallocates during syn-
chronisation, even when no changes have been made, resulting in unnecessary IO load for
the host system. Because this behaviour was only noticed after the development phase, no
cause analysis has been conducted. It appears possible that the write-back functions either
incorrectly copy an unmodi�ed node, or that some entries of the root tree are indeed being
changed, possibly unnecessarily.

6.5. Fuzzing

Fuzzing is a method for testing software by randomly generating input data until the process
crashes, or an assertion fails [Liang et al., 2018]. The search for successful inputs is greatly
accelerated by taking into account additional information about the executed code. Although
fuzzing is not able to prove the correctness of a system, it is a highly useful tool for �nding
previously unconsidered edge-cases.
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libFuzzer6 is a fuzzing engine which guides input generation by observing changes to code
coverage, and recombining promising inputs. With the help of cargo-fuzz7 and Rust bindings
for libFuzzer8, two fuzzing targets have been added to the B𝜀-tree storage stack, fuzzing for
sequences of key-value and object operations which lead to a crash or cause an assertion to
fail.

Although the original input provided by libFuzzer is a simple byte sequence, structured fuzzing
input is supported, with many prebuilt transformations from byte sequences to normal Rust
values. An example is shown in Listing 6.3, demonstrating the convenience of automatic
structured fuzzing.

1 #[derive(arbitrary::Arbitrary)]

2 pub enum ObjOp {

3 Write(ValidKey, Vec<u8>, u64),

4 Read(ValidKey, u32, u64),

5 Delete(ValidKey),

6 ...

7 }

8

9 pub fn run_obj_ops(ops: &[ObjOp]) {

10 let mut db = setup_db(64);

11 let os = db.open_object_store().unwrap();

12

13 for op in ops {

14 use crate::ObjOp::*;

15 match op {

16 Write(ValidKey(key), data, offset) => {

17 let (obj, _info) = os.open_or_create_object(key).unwrap();

18 let _ = obj.write_at(data, *offset);

19 },

20 // ...

21 }

22 }

23 }

Listing 6.3: An abridged example of object store fuzzing, ops contains an arbitrary sequence
of operations, which is processed in lines 12-21. If an error is encountered, the
responsible input is collected.

Over the course of several days of fuzzing, numerous crashes have been detected, traced to
previously unknown bugs and subsequently resolved. The located issues included edge cases
such as integer over�ows during chunk iteration when trying to iterate object chunks with
byte addresses larger than 512 TiB, but also a lack of key-value pair size restriction, which
would crash the B𝜀-tree storage stack after failing to split a root node with only one entry.

Fuzzing also helped to narrow down the cause of changes to the tree structure that caused
crashes later in the execution, by �nding minimal sequences of tree operations which would
6https://llvm.org/docs/LibFuzzer.html
7https://github.com/rust-fuzz/cargo-fuzz
8https://github.com/rust-fuzz/libfuzzer

52



still trigger a crash. This led to the reimplementation of range_delete with naive message
insertion, after fuzzing revealed that it could leave the tree in invalid states due to lack of
rebalancing functionality.

6.6. Memory vdev type

Although a storage system is usually con�gured to use persistent storage, there are cases where
its use is inconvenient: automatic testing and fuzzing. Concurrent access to the same backing
storage is not supported in the B𝜀-tree storage stack, each instance assumes exclusive access.
This prevents the parallel execution of multiple instances with the same con�guration, but
assigning each concurrent instance a unique storage con�guration would solve this problem.
However, using physical persistent storage still unnecessarily incurs the overhead of IO with
the underlying storage device, and causes additional wearout.

By introducing an in-memory vdev type, the B𝜀-tree storage stack can be con�gured to write
to a memory bu�er instead of �les/block devices. This provides each instance with exclusive
storage access, and is faster than actual �le IO, allowing for more fuzzing executions over a
given timeframe. The size limitation of in-memory vdevs is not a problem in practice, as neither
tests nor fuzzing require large capacities in order to function.

The implementation is comparatively simple: a bu�er of the con�gured size is allocated
and read/write operations are implemented by copying into or out of bu�er regions. To
accommodate concurrent access, the entire bu�er is read-write-locked on every operation.

6.7. Layered configuration

Previously, only a few parameters of the B𝜀-tree storage stack could be con�gured, by passing
separate arguments while constructing a Database. This included the storage con�guration
to specify which top-level vdevs to use, the cache size, and whether to ignore the database’s
previous content. Parameters like the utilised compression method or level, the capacity of the
writeback queue, or the size of the thread pool used for asynchronous IO could not be changed
by the user without editing the code.

The database initialisation procedure has been altered to allow user-supplied code to provide
di�erent components, such as a con�gured storage pool, or the root tree. As this �exibility is
usually not needed, a default implementation provides the required components based on a
nested con�guration structure called DatabaseConfiguration.

Although this allows an embedding application to con�gure the B𝜀-tree storage stack, the
application-side construction of a DatabaseConfiguration still needs to bemade user-con�gurable.
This is accomplished with the �gment9 library, which supports the construction of a nested
key-value document from multiple providers, which can be converted into a DatabaseConfigu-
ration if the format is correct.

These providers can be ordered, so that values con�gured via a higher-priority provider
override those of lower-priority providers. Two command-line applications developed in the

9https://github.com/SergioBenitez/Figment
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course of this thesis10 use the following providers (listed in an ascending order of priority): a
provider with a sensible default con�guration, a JSON �le located via the environment variable
BETREE_CONFIG, and �nally environment variables beginning with BETREE__ and hierarchically
delimited by __ (double underscore). Examples for both con�guration methods are displayed
in Listing 6.4 and Listing 6.5. The use of bectl config print-active is recommended when
using environment variables. The JULEA backend instead relies only on a JSON �le speci�ed
through the JULEA con�guration of the same format, and ignores environment variables for
consistency with other JULEA backends.

Because it would improve the developer experience if di�erent embeddings of the B𝜀-tree
storage stack used similar defaults and environment variables, two precon�gured �gment
providers for constructing a DatabaseConfiguration are available via DatabaseConfigura-

tion::figment_default and DatabaseConfiguration::figment_env if the library is compiled
with the figment_config feature.

1 {

2 "storage": {

3 "tiers": [

4 [ "/dev/disk/by-id/nvme-CT500P5SSD8_20512BF90C84" ],

5 [ "/dev/disk/by-id/ata-WDC_WD30EFRX-68EUZN0_WD-WMC4N2195306",

6 "/dev/disk/by-id/ata-WDC_WD30EFRX-68EUZN0_WD-WCC4N3RS58KK" ]

7 ]

8 },

9 "compression": { "Zstd": { "level": 3 } },

10 "access_mode": "OpenIfExists",

11 "metrics": { "enabled": true, "interval_ms": 500, "output_path":

↩→ "/tmp/betree.json" }

12 }

Listing 6.4: Example JSON con�guration

1 # Allocate storage preferences 0 and 1 on class 1, and fail for 2 and 3

2 BETREE__ALLOC_STRATEGY='[[1],[1],[],[]]'

3 # use only a 4GiB in-memory vdev as storage on class 0

4 BETREE__STORAGE__TIERS='[ [ { mem = 4294967296 } ] ]'

5 # use 2GiB for caching tree nodes

6 BETREE__CACHE_SIZE=2147483648

7 # enable Zstandard compression at level 3

8 BETREE__COMPRESSION='{ Zstd = { level = 3 } }'

Listing 6.5: Examples of con�guration via environment variables

10bectl and bectl-perf
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6.8. Cache size accounting

An existing bug in the B𝜀-tree storage stack was revealed during the initial development of a
scenario for the evaluation in Section 8.2.3.2. The scenario involves a large object being written
twice, each time with di�erent storage preferences. The metrics displayed in Figure 6.1 (top)
indicate that the �rst write completes at 1:41, while the second rewrite occupies a much larger
timespan (up until 51:00, when it was cancelled), writing vastly more data than expected in the
process.

Intensive debugging revealed that the act of unpacking a leaf node from its disk representation
was not accounted in the cache size, which is a single atomic counter cooperatively managed
by every user of the cache, including the tree layer. Soon after beginning the overwrite, the
cache size accounting has leaked considerable virtual cache space, eventually exceeding the
con�gured maximum cache size (visible in the second plot as the red line growing unboundedly).
When this happens, the cache eviction logic will always decide to evict its entries, even if
that would empty the cache completely, leading to every node inserted into the cache to be
immediately evicted afterwards. In order to empty the cache, any modi�ed entries must be
written back to disk, which triggers a catastrophic feedback loop: if the node was modi�ed
during or before write back, it is considered stolen and needs to be marked as deleted because it
is superseded by the newly modi�ed node. This deletion queues a message into a global bu�er
which will eventually perform the necessary change in the allocation bitmaps of the root tree
during the next sync. Unfortunately, due to the misaccounted cache size, the modi�cation of
the allocation bitmap is also immediately evicted and written back, only to be fetched again to
process the next queued deallocation message.

This caused the cycle of reallocation visible in the �rst plot after 1:41. Although this be-
haviour has been eliminated, it could reoccur whenever another cache size accounting bug is
introduced.
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Figure 6.1.: The plotted data has been down-sampled, and reduced to the �rst 1000s for readabil-
ity. The actual test ran for 51min, andwrote over 464GiB beforemanual cancellation.
Individual plots and notation are explained in Section 8.2.
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Chapter 7.

Applications

The B𝜀-tree storage stack is primarily a Rust library, meant to be embedded into applications
which can use the provided functionality either internally, or may choose to expose an arbitrary
subset of operations to the user.

A subset of the new aspects of the Rust API has already been described in the preceding
chapters, and this chapter will instead describe speci�c integrations of the library which have
been implemented as a part of this thesis.

7.1. bectl

In the absence of other integrations, there is no method for the user to directly interact with
the B𝜀-tree storage stack or any databases created with it. Even though realistic usage of the
library is likely to use the Rust API or another integration, a more direct access can be useful
during development or deployment.

bectl (a shortening of B𝜀-tree-control) was created early in the familiarisation process to �ll
this gap, exposing many of the available operations in the form of a command-line application.
Even in conjunction with more sophisticated integrations, bectl can remain a useful debugging
and diagnosis tool. Its functionality is organised with nested subcommands (discoverable via
integrated help output), and an example usage is shown in Listing 7.1.

The commands are grouped into four top-level categories:

Configuration
The currently active and default database con�gurations can be listed, which can be
useful to verify expectations against the actually used con�guration. which is comprised
of a con�guration �le and environment variables, as described in Section 6.7.

Database Management
Besides forcing a database reinitialisation, resulting in the loss of all stored data, bectl can
also display the current database superblock for diagnosis purposes, and list the entries
of the root tree.

Key-value interface
Basic manipulation of key-value pairs is supported, by generating a full listing of the
entries of a speci�ed dataset, and allowing the user to query, insert, or delete additional
entries. Additionally, there is a subcommand for outputting the abridged tree structure
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introduced in Section 8.1.1, to help gain an intuitive understanding of how di�erent
operations a�ect the B𝜀-tree.

Object interface
Similarly to the key-value interface, the object subcommands allow listing of objects
(incl. metadata), as well as the overwriting, deletion, renaming, and reading of arbitrary
objects.

This approach of creating a new process to accomplish a single purpose is inferior to a client-
server structure in terms of e�ciency, as the constant overhead of opening and closing the
database is incurred for every operation, and in-memory caching is limited to the comparatively
short lifetime of only one operation.

7.2. JULEA

As previously described in Section 2.4, JULEA abstracts over three di�erent families of storage
interfaces. Although the existing B𝜀-tree storage stack functionality could be used to imple-
ment a key-value backend, only an object store backend has been implemented. This section
introduces a JULEA backend implemented on top of the object-storage extension of the B𝜀-tree
storage stack.

7.2.1. Choice of implementation language

Because the JULEA libraries and included backends are exclusively written in the C program-
ming language, and the B𝜀-tree storage stack already had a C interface, an initial prototype
backend was written in C as well. While the resulting backend was functional, there were a
few disadvantages to this choice:

1. The JULEA build process would have to either build the B𝜀-tree storage stack libraries
itself, resulting in a dependency on the Rust toolchain, or the libraries would have to be
provided by the user during compilation.

2. The B𝜀-tree storage stack C interface results in another layer of error translation

3. Support for multiple object namespaces requires careful locking behaviour, to support
parallel access by di�erent JULEA threads.

4. Because the layout of B𝜀-tree storage stack type de�nitions is not guaranteed to be
stable, and is not intended to be exposed to the API consumer, the C interface returns
pointers to opaque types. This results in otherwise unnecessary allocations and pointer
dereferencing.

A JULEA backend has the form of a dynamically loadable library, which must export a function
backend_info, which returns a JBackend. This return value describes the backend capabilities
and holds the function pointers corresponding to each backend operation.

This contract can also be ful�lled by a Rust library, if compiled with the crate type cdylib1.
The implementation of the backend in Rust addresses the disadvantages identi�ed above:

1For "C dynamic library"
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1. Each project only requires a single toolchain, either for C or Rust, but not both. A
deployment of JULEA with the B𝜀-tree storage stack backend still requires both.

2. The backend can directly use the Rust interface, and only needs a single layer of error
translation.

3. Rust’s standard library, and external libraries are available to avoid implementing error-
prone manual locking.

4. A level of indirection is saved, as the Rust interface allows for visibility restriction on
structures. The lack of layout stability guarantees are not relevant, because the B𝜀-tree
storage stack is linked into the backend library.

7.2.2. Implementation

In order to conform to the C API expected for backend libraries, the signatures and type
de�nitions must be made available to the Rust compiler. Calling back into JULEA’s tracing
facilities also requires the declaration of the involved functions. A narrowly selected subset
of these de�nitions is automatically translated from header �les by means of rust-bindgen
and a build script2. The resulting crate julea-sys is then used by julea-betree. Despite the
conventional "-sys" su�x, julea-sys does not link against any JULEA libraries.

With these bindings, each backend function has been implemented similarly to the example
shown in Listing 7.2. Each backend function needs to reinterpret the untyped pointers (lines
7-9), before using them to call the corresponding object storage functions (line 13). Additionally,
operation hierarchies and durations are made transparent to JULEA by calling into its tracing
facilities (line 11). Finally, the resulting object handle is written into the output pointer, any
errors are logged, and the presence of an error is communicated by returning a boolean (line
18).

After the initial implementation, the JULEA project added iteration capabilities to the object
backend interface on suggestion3. This functionality has been implemented by wrapping the
existing Rust iterator API.

7.2.3. Assessment

Once compiled, the julea-betree library has to be registered with JULEA by copying to or
creating a symbolic link in the backend library directory (e.g. as libobject-betree.so). JULEA
can then be instructed to use the backend by specifying backend=betree, and the backend path
argument speci�es the location of a JSON �le following the format described in Section 6.7.
The newly created backend passes the JULEA object tests and benchmarks without errors.

The JULEA backend interface has very limited support for error handling, using only a boolean
return value to communicate to the caller whether the backend has encountered an error.
Neither JULEA itself, nor the application calling into JULEA, can di�erentiate between or react
to di�erent causes for a negative (false) return value. For example, a read failure due to a
non-existing key, database corruption, database miscon�guration, or an operating system error

2https://doc.rust-lang.org/cargo/reference/build-scripts.html
3https://github.com/julea-io/julea/issues/91
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all appear identically to the caller, with no means of reacting to di�erent error conditions. This
information is available to julea-betree, and could be translated into a richer error type if the
JULEA signatures are updated, but currently the error is only logged and reduced to a boolean
value.

During shutdown of the JULEA server, or when a client-mode process exits, each JULEA
backend is unloaded. This causes complications because julea-betree registers an exit handler
with glibc to clean up thread-local storage, and attempting to execute this exit handler will
result in a segmentation fault if the backend has already been unloaded. There seems to be
no o�cial way of deregistering such an exit handler, and the thread-local value is not directly
accessible because it is created from within a dependency of the B𝜀-tree storage stack.

As the operating system will clean up the process’ resources after exiting, it is not necessary
to unload the modules individually. A mechanism for backend modules to opt-out of being
unloaded has been suggested to the JULEA project4, but the changes are still pending approval
at the time of writing.

4https://github.com/julea-io/julea/pull/95
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1 $ export BETREE_CONFIG=/var/lib/betree/config.json

2 $ bectl config print-active

3 DatabaseConfiguration {

4 storage: StoragePoolConfiguration {

5 tiers: [

6 TierConfiguration {

7 top_level_vdevs: [

8 Leaf(File("/dev/disk/by-id/nvme-CT500P5SSD8_20512BF90C84",),),

9 ],

10 },

11 ],

12 queue_depth_factor: 20,

13 thread_pool_size: None,

14 thread_pool_pinned: false,

15 },

16 alloc_strategy: [ [ 0, ], [ 1, ], [ 2, ], [ 3, ], ],

17 compression: None,

18 cache_size: 268435456,

19 access_mode: OpenIfExists,

20 metrics: None,

21 }

22 # double underscore is used as a separator for configuration paths

23 $ export BETREE__COMPRESSION='{ Zstd = { level = 6 } }'

24 $ bectl config print-active

25 ...

26 compression: Zstd(Zstd { level: 6, }, ),

27 ...

28 $ bectl db init # reset the database, deleting all data

29 # create a new object "large_object" in the namespace "example_namespace"

30 $ bectl obj example_namespace put large_object < large_file

31 $ bectl obj example_namespace list

32 large_object (5368709120 bytes, modified 2021-05-29T20:13:15.259454+00:00)

Listing 7.1: Example usage of bectl, showcasing the layered con�guration system. In the �rst
display of the currently active con�guration, compression is still disabled, but after
overriding that particular setting with an environment variable, the compression
con�guration has changed. Afterwards, an object is created and its metadata
displayed.
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1 unsafe extern "C" fn backend_create(

2 backend_data: gpointer,

3 namespace: *const gchar,

4 path: *const gchar,

5 backend_object: *mut gpointer,

6 ) -> gboolean {

7 let backend = &*backend_data.cast::<Backend>();

8 let ns = backend.ns(CStr::from_ptr(namespace));

9 let key = CStr::from_ptr(path);

10

11 let (obj, _) = jtrace::with(J_TRACE_FILE_CREATE, path, || {

12 let obj = ns

13 .create_object(key.to_bytes())

14 .map(|(handle, _info)| handle);

15 (obj, (0, 0))

16 });

17

18 return_box(obj, "create object", backend_object)

19 }

Listing 7.2: As an example for the implementation of a backend operation, backend_create
converts the incoming raw pointers back into Rust references, then calls the
corresponding object creation function from the public B𝜀-tree storage stack
API, while hooking into JULEA’s tracing system. The result is written into
backend_object via return_box as a heap-allocated ObjectHandle, and the absence
of an error is indicated by a return value of true.
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Chapter 8.

Evaluation

In absence of long-term production deployments of the B𝜀-tree storage stack, the merit of
the previously discussed changes can be di�cult to ascertain, including their correctness,
performance, and suitability to the implementation of realistic applications. This section
evaluates the correctness and standalone performance of the system. A comparison to suitable
alternatives has not been conducted, as a fair comparison necessitates familiarisation with the
internals of each solution in order to adjust their tuning parameters to the given scenario.

8.1. Object store functionality

During and after the initial implementation of the object store extension, correctness was tested
with the following methods, in addition to manual veri�cation with the bectl debugging tooling
described in Section 7.1.

8.1.1. Integration tests

Although many individual components of the B𝜀-tree storage stack are tested in isolated unit
tests, there are complicated interactions which can only occur in situations where multiple
abstraction layers are used at once. For example, even if the splitting operation of internal nodes
is unit-tested, it does not cover the special case of splitting a tree’s root node, an operation
which relies on the presence of the data management layer.

Integration testing is an approach to software testing where the isolation between each com-
ponent from unit testing is lifted, and the system is tested in larger groups, or as a whole. In
contrast to unit tests, the failure of an integration test does not necessarily give an indication
of where the issue is located, but by testing multiple layers at once, it allows fewer tests to
check more of the system’s behaviour.

Due to the nested nature of a tree data structure, and the complexity of B𝜀-trees after even
simple operations, accessing and comparing the properties of each tree node to their supposed
values would result in lengthy and di�cult-to-maintain testcases. Additionally, these testcases
could be invalidated by minor changes to the tree logic, e.g. a di�erent splitting threshold
could restructure the entire tree. Instead of fetching and comparing each individual property,
a hierarchical JSON object is constructed from the B𝜀-tree, which can then be compared to a
stored version in a separate �le, similar to the example shown in Listing 8.1. This work�ow
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is facilitated by an existing library and command-line utility: insta and cargo-insta1. The
generated JSON document consists of an abridged representation of the tree shape, which
includes node types, storage preferences, and key ranges. This document additionally contains
the keys of the data and metadata datasets (but not their values). Although this approach does
not address the fragility of testing for the tree structure, it does reduce the e�ort involved in
updating the test suite when testcases are failing incorrectly.

1 #[test]

2 fn insert_single() {

3 // a TestDriver with 1 storage class, backed by a 256MiB in-memory vdev

4 let mut driver = TestDriver::setup("insert single", 1, 256);

5

6 // each checkpoint compares the tree state to a JSON document on disk

7 driver.checkpoint("empty tree");

8 // insert 2000 * 8192 bytes of random data as object "foo"

9 driver.insert_random(b"foo", 8192, 2000);

10 driver.checkpoint("inserted foo");

11

12 for _ in 1..=3 {

13 driver.insert_random(b"foo", 8192, 2000);

14 // intentionally same key as above, to assert that tree structures is

15 // not changed by object rewrites of the same size

16 driver.checkpoint("inserted foo");

17 }

18 }

Listing 8.1: Example test case, demonstrating a checkpointing system which avoids manual
assertions

8.1.2. JULEA test suite

The JULEA project provides its own test suite, and a benchmarking utility. In conjunction with
the B𝜀-tree storage stack JULEA object backend described in Section 7.2, both of them can be
used as an additional means of verifying the basic functionality of the system to some extent.

Covered by the JULEA test suite are basic object operations, such as creation and deletion,
reading, writing, and metadata queries, but as JULEA is unaware of the tiered storage func-
tionality, it can only utilise the default storage class, and is unsuited to testing that component.
During development, the test suite indicated not only multiple mismatches in the semantics of
an operation as understood by JULEA, but an important bug in object opening as well.

After resolving these issues, the B𝜀-tree storage stack backend passes both the JULEA test suite
and the benchmarking utility. A performance comparison of the new backend according to the
JULEA benchmarking suite is provided in Appendix A.

1https://github.com/mitsuhiko/insta
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8.2. Performance

This section examines the performance of the �nal B𝜀-tree storage stack, with all the previously
discussed extensions and modi�cations. After establishing an approach to data gathering and
describing the precautions taken to achieve reliable measurements, multiple usage scenarios
are constructed, measured with varying parameters, and the results assessed.

8.2.1. Measuring approach

Measuring the performance of a system is an error-prone process, as the necessary observation
of the system could a�ect the measurements themselves. Precautions must be taken to limit any
external in�uences on the measured application. Instead of gathering all feasible information,
only a subset relevant to the analysis is gathered.

An aggregation of metrics in �les of newline-delimited JSON has been chosen over alternative
modes2 of exposing metrics, for its �exibility, simplicity and ease of implementation. Individual
steps of the data gathering process can be expensive, measurements of up to 20mswere observed
during testing. To limit interference with the measured process, as much information as possible
is gathered by separate processes, converted to JSON and written to a �le separately.

These individual JSONL (newline-delimited JSON) �les are only merged into one �le after
the sensitive measuring process is completed, and �nally presented visually with the Python
plotting library Matplotlib.

8.2.1.1. Selected metrics

B𝜀-tree storage stack
The following metrics are reported directly by the B𝜀-tree storage stack, with a con�g-
urable interval.

Cache Monotonic counters for cache events, such as hits, misses, evictions, and the
current cache capacity and size.

Storage Grouped by storage class, each vdev reports monotonic counters of the amounts
of blocks read and written so far, the number of failed operations, and any checksum
error encountered.

Process information
The reported cache statistics are based on internal accounting, which does not include
other uses of memory, such as compression contexts or bu�ers currently in the writeback
queue. To capture these other sources of memory usage, and to obtain a de�nitive upper
bound on memory usage3, the operating system is queried for process statistics.

The operating system does not distinguish between memory usage by purpose, and can
help con�rm the internal statistics. Additionally to the memory usage (resident set size),

2A Prometheus monitoring endpoint was brie�y considered and implemented, but �nally rejected for the
additional complexity of serving and gathering its metrics, and the requirement for global state by the selected
library.

3In case the internal cache statistics are wrong, as in Section 6.8

65



the gathered process statistics include the CPU time spent in the kernel and in user mode,
as well as minor and major page faults.

System information
To account for thermal throttling of storage devices and the CPU, a separate process peri-
odically gathers the current temperatures of all hardware sensors via libmedium4, which
reads and interprets the pseudo �les exposed by the Linux kernel’s /sys/class/hwmon
interface.

Timestamp
In order to correlate and merge di�erent JSONL streams, the current time is recorded as
the number of milliseconds passed since the UNIX epoch (1970-01-01 00:00).

8.2.1.2. Measures taken to improve test conditions

Various factors can result in unreliable or incorrect measurements, such as:

Thermal Throttling CPUs and storage devices can exceed their intended operating temper-
ature, and throttle their performance to avoid an emergency shutdown or hardware
damage. The recorded metrics contain the temperatures of all hardware sensors, which
can be used to determine if any devices reached their thermal throttling threshold.

Between every test run, the system is allowed to cool down for a period of at least 70s,
and the �nal test runs were all taken with a similar ambient temperature. After observing
high temperatures in the SSD, the GPU fan has been set to a constant speed manually,
because the SSD is within the generated air�ow.

Unrelated system load To prevent other background processes from interfering with the
measurements, any active or scheduled system services are temporarily deactivated,
and the �nal measurements are taken with the graphical interface of the workstation
deactivated.

SSD flash translation layer (FTL) trimming When using SSD storage, the entire device
is marked as discarded with blkdiscard, so that each execution begins without any
preallocated blocks. Otherwise, the FTL might behave di�erently between executions,
choosing di�erent algorithms or parameters for block allocation, or garbage collection.

Choice of data sources Most conceivable scenarios need data to write into a dataset or object
store, but the choice of data can drastically alter the measured results.

When choosing a �le from a local �le system as a data source, the B𝜀-tree storage stack
might be kept waiting by a slower �le system, thus limiting its performance.

If the compression feature is enabled and the chosen data is highly compressible, giga-
bytes of raw input data could be shrunk to mere megabytes. Additionally, the storage
device itself might detect and react di�erently to speci�c patterns, such as data con-
sisting only of zeroes [Zuck et al., 2014], or new data matching the current content of
other blocks [Kim et al., 2012]. If this is unintended, the measurement would capture an
entirely di�erent system bottleneck, and are unlikely to be representative for realistic
usecases. The other opposite is uniformly distributed random data, which is statistically

4https://gitlab.com/Maldela/libmedium, version 0.5.5
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highly unlikely to be compressible, and would result in wasted compression attempts.
Not all sources of random data provide su�cient generation speeds5, but as crypto-
graphic use is not intended, Xoshiro256Plus is chosen as a su�ciently fast algorithm
[Blackman and Vigna, 2018].

8.2.2. Hardware information

Each of the following measurements were taken on a local workstation with an AMD Ryzen
3600 CPU, 32GiB of dual-channel memory6, running NixOS 21.05 on Linux 5.9.16 with the
following storage con�guration unless speci�ed otherwise:

1. A new Crucial P5 500GB SSD (CT500P5SSD8) is used for storage class 0, attached via
NVMe over PCIe3x2. It is running �rmware version P4CR324, and only presents a single
logical block addressing format option of 512 B to the host system.

2. TwoWestern Digital Red 3 TB HDDs are used as top-level vdevs of storage class 1, so that
allocations are shared evenly between the two drives and future read/write operations
can utilise both at the same time.

The model of each drive is WD30EFRX-68EUZN0, a 5400 RPMHDD intended for network-
attached storage, and they are attached to the ASMedia ASM1061 controller via SATA 3.
Both drives report an operating time of approximately �ve years, and use the �rmware
versions 80.00A80 and 82.00A82.

8.2.3. Scenarios

The following scenarios exercise both the new tiered storage functionality and the object store
abstraction to various degrees. Although they can not replace proper benchmarking with a
real application when determining the suitability of the B𝜀-tree storage stack for a particular
purpose, they serve to give a rough understanding of performance with varying parameters,
such as cache size, allocation strategies, and parallelism.

When referring to a speci�c storage device, the following plots use the notation c/v to refer to
the vth top-level vdev of storage class c. For example, in the default con�guration above, 0/0
refers to the SSD, while 1/0 and 1/1 refer to the two HDDs.

When a �gure contains multiple plots, they are horizontally aligned by the elapsed real time.
Although the measurements of both HDDs are recorded and plotted separately, their plots
often align very closely, overlapping in many places. The total read/write speed of each class is
the sum of their individual measurements.

5With a kernel con�gured to use RDRAND for /dev/urandom, output speed can be as low as 66MiB/s on certain
Ryzen CPUs.

6M391A2K43BB1-CTD, 2Rx8 ECC UDIMM, CAS CL 19
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Figure 8.1.: Three di�erent executions of the scenario introduced in Section 8.2.3.1, showing
the read/write progress made on each con�gured storage device: the SSD on class
0 (0/0), and the two HDDs on class 1 (1/0, 1/1).

8.2.3.1. Cross-class object

This �rst scenario serves to establish two baselines for homogeneous object storage on each
of both available storage classes, then measure the overhead of heterogeneous allocation in a
single object.

A single thread creates �ve objects in the same object store and sequentially �lls each with
5GiB of random data. The �rst 2.5GiB are written with a StoragePreference of 1, whereas 0
is speci�ed for the second half. Afterwards, each object’s data is read completely in the original
creation order of the objects.

The scenario is executed with the following three di�erent allocation strategies. As explained
in Section 5.3, an allocation strategy speci�es the storage classes used to ful�l preferences for
each class:

1. [[0],[0],[],[]] will allocate requests for 0 and 1 on class 0, and fail requests for 2 or 3.

2. [[0],[1],[],[]] will allocate requests for 0 and 1 on the requested class, and fail other
requests.

3. [[1],[1],[],[]] will allocate requests for 0 and 1 on class 1, and fail other requests.

The read/write performance of each execution is shown in Figure 8.1. The upper and lower
plot display the homogeneous operations on the storage classes 0 and 1, respectively, while the
operations in the middle plot alternate after the middle point of each object.
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Notably, because of the even split between storage classes, and each logical byte being written
and read exactly once7, the completion time of the second con�guration with mixed allocation is
very close to the arithmetic mean of the other two con�gurations: (5min+ 15𝑠 + 1min+ 5𝑠)/2 =
3min + 10𝑠, suggesting that the �xed overhead of tiered storage in this scenario is negligible.

8.2.3.2. Storage class inversion

Whereas the previous scenario only involved static class assignment, without any changes
after each node was written, this scenario stresses the database by inverting the storage classes
of a multi-segmented object: each part of the object is written to classes 0 and 1 alternately,
read sequentially, and then overwritten again with an inverted alternation, so that every part
switches to the respectively other class.

Among the multiple segment counts and sizes tested, the con�guration shown in Figure 8.2
had the longest execution time, with four segments of 8 GiB of randomly generated data each.
The �rst write phase (0:00-2:08) lasts only 128 seconds, as new tree nodes are �lled with data
without having to wait for input. Conversely, the second write phase �rst needs to fetch nodes
from disk in order to insert messages into them8, resulting in a 75% longer duration of 225
seconds. The �rst and second read phase have very similar durations at 119 and 120 seconds
respectively, suggesting that there is no residual cost to a storage class change.

From smaller-scale testing, the last node is expected to remain on its previous storage class,
because the upper layer may retain the last bu�ered messages necessary to replace its contents,
yielding a non-uniform storage preference until they are �ushed.

Whereas the CPU temperature matches the expected lower utilisation during read phases, the
development of the SSD temperature reveals that it only cools down signi�cantly while the
test is reading from class 1, but notably not while writing to it. Because the measurements
indicate no SSD write activity during that time, and only negligible read activity, the cause for
the sustained temperature is unclear. The unexpected heat could potentially be explained by
an internal write cache being �ushed after the large write bursts before, or other internal �ash
controller processes.

The third plot contains the memory usage of the entire process as reported by the operating
system, as well as the CPU time spent in either kernel or user mode. While the total memory
usage remains reasonably close to the con�gured cache size of 256MiB during read phases, an
increased memory usage is observed in write phases due to the bu�ers stored in the writeback
queue, which can only be freed after they have been written to disk. The rapid insertion of
messages during the �rst write phase is the most computationally intensive section, particularly
while writing to the SSD, which can accommodate much higher rates of insertions. Whereas
writing system calls can return to the calling thread after the operation has been handed o�
to the SSD’s cache, reading system calls need to wait until the operation is ful�lled before
returning control to the caller, resulting in the larger system time usage during SSD read
cycles.

7Neither condition is necessarily realistic, many workloads are either write- or read focused, and would likely
divide the object into uneven pieces due to an underlying structure of the object’s data.

8Although the cost of such situations is usually lessened by message bu�ering, a large sequential workload
will soon trigger a �ush of the message bu�er, necessitating the fetching of the corresponding child node for
message insertion.
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Figure 8.2.: An I/O, temperature, and process information plot, displaying the four phases of
the storage class inversion scenario. The two sequential read phases are designated
by the green background sections at 2:09-4:08 and 7:55-9:55.

8.2.3.3. Prioritised zip index

In contrast to the previous sequential workloads, this usecase is dominated by (parallel) random
reads: a specially constructed zip archive is written to a newly created object, followed by the
extraction of 10000 randomly9 selected �les contained in the zip archive. This random read
workload is too unpredictable to bene�t from readahead, and largely relies on caching as much
of the archive as possible.

A zip archive contains a central directory of directory and �le entries, which is essential for
locating the data of individual �les [PKWARE, Inc., 2003]. The starting boundary of this central
directory is located manually with zipinfo10 and passed as a command-line argument during
scenario invocation. Only the 9.3MiB section past this boundary is allocated on storage class 0,
the remainder of the archive is allocated on class 1. This uneven split is intended to accelerate
the initial fetching of essential metadata, as the used zip implementation (zip-rs11) eagerly reads
and decodes metadata for all 80690 entries of the archive before its contents can be queried.

To provide a size distribution and compressibility more realistic than a uniform synthetic
workload, and to allow reproduction of these measurements, the sources of the Linux kernel12

were selected and repacked as a zip archive. This is necessary, as the provided tar �le (a
tape archive, designed for sequential access) does not store its metadata in a manner suitable
for e�cient random access. Compression was disabled during creation (zip –compression-

method=store), to increase the archive size and test the B𝜀-tree storage stack compression
in a later scenario. Additionally, due to the comparatively low size of 1011MiB, a cache size
smaller than the archive is essential in forcing uncached read operations. In a real-world setting
featuring signi�cantly larger datasets, the central directory of each archive would not remain
cached as reliably as it is with this single archive. Although a cache size of only 32MiB is

9But deterministically between executions
10Speci�cally zipinfo -v data/linux-5.12.13.zip | grep -A2 ’The central directory’.
11https://github.com/zip-rs/zip, version 0.5.13
12Version 5.12.13, https://cdn.kernel.org/pub/linux/kernel/v5.x/linux-5.12.13.tar.xz
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Figure 8.3.: End-to-end completion times of 10000 fetches of randomly selected �les from a zip
archive object, showing the in�uence of di�erent allocation strategies, two cache
sizes, and added parallelism up to 10 threads.

unreasonably low for any actual deployment, it is used here to force the cache misses that
would be present with a larger dataset.

As can be seen in Figure 8.3, the largest end-to-end improvement from tiered storage is a 55s
reduction in runtime when using 2 worker threads (regardless of cache size), which amounts to
16.7% of the runtime when tiered storage is not used. This improvement is disproportionately
large, considering that only 9.3/1011 = 0.9% of the entire object is set to prefer allocation on
the SSD. These results con�rm that applications with non-uniform structured access patterns
can bene�t from setting di�erent storage preferences for di�erent sections of an object.

8.2.3.4. Compressed single-class object

In this scenario, a single �le is written from a local �lesystem into an object in a newly
created object store, then read back by the application. The e�ects of di�erent compression
con�gurations are measured, starting with no compression, and then using the Zstandard
compression algorithm integrated in Section 6.3 with compression levels from 1 to 16.

The zip archive described in Section 8.2.3.3 is used as the input �le, due to its reasonable
compressibility, and ease of reproducibility. Although it is possible for the reading from the
local �lesystem to have delayed the measurement, it can be reliably read in manual testing
within 0.7s during a continuous read operation, which is far quicker than even the fastest read
time measured.

Contrary to the other scenarios, only a single storage class is used here, which is comprised of
a single HDD. The comparatively slow speeds of the HDD result in longer scenario execution
times, and emphasise the bene�ts of the high compression ratio of the selected input �le: the
logical read/write speeds can exceed the maximum physical speeds of the drive, whereas the
CPU would likely become a limiting factor with a much faster storage medium.

Figure 8.4 shows the read and write phase completion times of each compression con�guration,
as well as the total amount of data written to the HDD. Although this total includes the root
and metadata B𝜀-trees, superblocks, and overwritten data, and thus should not be considered
the compressed size of the object13, it provides an upper bound.

13The B𝜀-tree storage stack does not currently support the concept of compressed object sizes or compressed
key-value value sizes.
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Figure 8.4.: Write/read phase durations and total data written to the storage medium per
compression con�guration. Zstandard is abbreviated as Zstd, and the following
number indicates the compression level.

As expected given the highly compressible input �le, the total data written is drastically reduced,
which results in faster read/write phases by having to store/fetch less data. For this speci�c
case, compression with Zstandard reduces the total duration up until compression level 11,
after which the initial compression takes longer than the uncompressed test run. If it is known
in advance that the object will be read multiple times, these higher compression levels could
still be bene�cial.
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Chapter 9.

Summary

The B𝜀-tree storage stack has been extended with an object storage interface, which maps
operations for variably-sized objects onto the underlying key-value interface, and permits
the association of metadata attributes with objects. This is accomplished while preserving
the bene�ts of the underlying write-optimised B𝜀-tree data structure, by matching the object
semantics with a separately-de�nedmetadatamessage type, andmade available via a convenient
and misuse-resistant object interface.

A tiered storage system has been developed speci�cally for B𝜀-trees, which allows the aggre-
gation of varied storage devices into four storage classes. The user can then specify storage
preferences for each key-value pair, which translates to chunk-granularity when working with
the object interface. When speaking of unstructured data, the referenced data is often not
truly unstructured, but instead the storage system is not equipped to take advantage of that
structure. While the B𝜀-tree storage stack does not attempt to detect or exploit any structure
within stored data by itself1, it does allow the user to communicate a very rough structure in
the form of storage preferences, which can lead to performance gains when the access patterns
are guided by that structure, as demonstrated in Section 8.2.3.3.

In addition to correcting numerous existing issues, multiple improvements to the B𝜀-tree
storage stack include space savings in the on-disk representations of allocation bitmaps and leaf
nodes, a new compression algorithm, and the usage of direct IO. The library has been integrated
into the storage framework JULEA as a new object backend and passes all object-speci�c tests.
The existing unit testing approach has been complemented with snapshot-based integration
tests and two fuzzing targets.

Future Work

In addition to the remaining future work items of [Wiedemann, 2018], four areas for future
improvement and extension have been identi�ed, which can be further grouped into changes to
the already existing storage stack, and improvements to the newly implemented functionality.

Multiple possible improvements pertaining to the core B𝜀-tree data structure were discovered
during debugging, as well as missing functionality initially assumed to be implemented:

1Except via the compression feature
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Range delete For example, when deleting large contiguous ranges of key-value pairs, the
range_delete operation used to e�ciently discard entire tree nodes, without the usual
insertion of deletion messages. Unfortunately, the necessary rebalancing and tree shrink-
ing functionality was not fully implemented in the original system, and has been replaced
with the ine�cient insertion of deletion messages. A more e�cient reimplementation
would greatly improve deletion speeds of objects.

Direct insertion While inserting a message, the message is not always inserted into the root
node. Instead, the B𝜀-tree storage stack traverses the tree as far as possible using only
cached nodes, without performing any disk IO. When inserting a full object chunk, the
data is �rst copied into the message, and then out of the message into the leaf node
immediately after, if the leaf node was cached. The copy into the message is necessary if
the message outlives theWrite operation, but an optimisation to the message interface
could eliminate the �rst copy when inserting a newly constructed message directly into
a leaf node. As the user-provided bu�er is only valid during the Write operation, the
message type must support the conversion into an independent message, which carries
the bu�er itself.

Early query abortion Currently, after the B𝜀-tree storage stack encounters e.g. a deletion
message during a point query, all other messages for that key are still fetched, even
though they can not alter the �nal result. By extending the message interface to allow for
a message to indicate that its application will override the e�ects of any other messages,
point queries can be aborted early, and the nodes further down the access path may not
need to be fetched from disk.

Opportunistic flush during queries While querying for a key-value pair, all the nodes
along the access path must be loaded into memory. This opportunity could be used to
gather and �ush any messages intended for the �nal tree node.

Force-flushing Due to the peculiarities of the �ushing process, groups of small messages
(such as deletion messages) may remain bu�ered for a long period of time, delaying
their e�ect (here the removal of the corresponding key-value pairs and eventually the
containing leaf node) for longer than desired. A background process to gradually force a
�ush of all message bu�ers could solve this issue.

Insert batching A batched insert interface, to reduce some per-insert overhead if many new
messages are to be inserted at once. Currently, the tree is traversed from the root node
for each message insertion, but if many messages share a destination node, this e�ort
could be reused.

Long-term performance The system performance over longer periods of time has not been
investigated, tree ageing and fragmentation e�ects should be measured over extended
usage.

The lower layers of the storage stack, the data management layer and the storage pool, can
also be improved in several ways:

Space accounting Although the interface of the data management layer indicates that space
accounting was planned, it is currently not possible to query the free space available
on a given storage device. Proper space accounting is essential in balancing out uneven
usage of storage devices, and the knowledge that a vdev no longer has any spare capacity
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would greatly accelerate allocation failures (which currently have to scan all allocation
bitmaps for that device).

Runtime-configurable compression The compression type used for a given object or names-
pace should be con�gurable. Per-object compression poses similar challenges as tiered
storage, because compression is speci�c to a tree node, not a key-value pair.

Background compression Compression currently happens before adding the task to the
background worker queue. If compression was o�oaded to that thread pool, the Write
operation could return control to client code without waiting for compression to �nish.

Runtime-configurable block size The block size is currently statically con�gured. Al-
though the B𝜀-tree storage stack should support its compile-time recon�guration, more
work is necessary to support runtime-con�guration, or heterogeneous block sizes.

Certain advanced usecases of the newly implemented object storage layer might become more
e�cient with the implementation of:

Configurable chunk size A method of specifying an alternate chunk size for an object could
be bene�cial not only to reduce key-value overhead for large objects, but also when much
smaller query/update granularities than the default chunk size are typical. A metadata
lookup for the chunk size for everyWrite operation would negate the write optimisation
advantages of the B𝜀-tree. The chunk size could be cached in the object handle if changes
to the chunk size of an object are forbidden after its initial creation. Alternatively, the
chunk size setting could a�ect an object storage namespace instead of individual objects.

Copy operation The Copy operation has not been implemented due to the complexity of an
e�cient data sharing approach. Although it is already possible for the user to perform a
naive copy of all object chunks and metadata (even for sparse objects), the B𝜀-tree storage
stack could provide an optimised operation, possibly similar to the copy-on-abundant-
write strategy described in [Zhan et al., 2020].

Applications utilising the storage stack with multiple storage tiers could bene�t from the
following two features:

Dynamic policy Dynamic migration policies could decide whether to move an object (or
key-value pair) to a di�erent storage class based on past access patterns, or statistics
about similar objects. Such a policy could complement the user-provided preferences in
cases where the user would otherwise reimplement similar access tracking.

Tier-specific node sizes While the large node size of the B𝜀-tree is well-suited for spinning
storage devices with long seek times, modern SSDs do not incur the same cost for random
IO. Instead, the read ampli�cation caused by the larger node sizes may outweigh any
bene�ts of sequential IO. A partial solution to this was proposed in [Wiedemann, 2018], by
splitting leaf nodes into smaller nodes, which can be fetched and interpreted individually.
These smaller nodes could still be allocated contiguously and read completely on HDDs,
to maintain the read throughput for sequential access.
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Appendix A.

JULEA backend comparison

This comparison has not been performed with the same diligence as the primary evaluation in
Chapter 8. As there are many unaccounted sources of unfairness, these results should be inter-
preted carefully only as a rough orientation, instead of a precise benchmark. The benchmarks
are provided by JULEA1 via the julea-benchmark tool. Only object-speci�c benchmarks are
executed, each with a target duration of ten seconds. The batched write benchmark is executed
with a custom block size of 128 KiB (the object chunk size) in addition to the default block size
of 4 KiB.

All benchmarks were executed using only the SSD described in Section 8.2.2, as the tiered
storage feature is not exposed to JULEA. Both the POSIX and GIO backends are used in a
client-server con�guration, as they do not support being loaded by the client directly, with an
ext4 �lesystem created using mke2fs with the default parameters and options2. The B𝜀-tree
storage stack backend was con�gured to use direct IO with a cache size of 2 GiB to match the
availability of the Linux page cache of the other backends. It is tested both in a client-server
and client-only con�guration, and the compression feature is disabled.

Results The full results for each backend con�guration are displayed in Table A.1. In com-
parison to the �lesystem-based backends, the B𝜀-tree storage stack backend performs well at
object creation and �xed metadata queries, but worse at object deletion. This is likely related
to the previously described workaround in the implementation of range_delete, and should
improve drastically with an optimised reimplementation of that operation.

The client-server con�guration appears to be limiting the performance of the B𝜀-tree storage
stack backend, as indicated by the much higher throughput measurements if executed in a
client-only con�gurations, which avoids the networking overhead by loading the backend
library directly into the client process. The high read throughput largely relies on in-memory
caching.

Finally, the cost of small writes is unexpectedly signi�cant, as shown by the di�erence in
the measurements of the batched write benchmark with varying block sizes. Each write will
independently traverse from the root towards the tree node closest to the target node, and
insert a new message into that node. This process could be optimised with the Insert batching
and Direct insertion future work proposals.

1Using commit 115d9e4a8493816c09e51b4c6d37993a9ce8f915, which contains necessary changes for client-side
loading

2Version 1.46.2 (28-Feb-2021), active features: has_journal, ext_attr, resize_inode, dir_index, filetype,
needs_recovery, extent, 64bit, flex_bg, sparse_super, large_file, huge_file, dir_nlink, extra_isize,
metadata_csum
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Benchmark POSIX GIO B𝜀-tree (Server) B𝜀-tree (Client)

Create 40158/s 31260/s 65891/s 709704/s
Create (Batch) 41168/s 32288/s 65677/s 791475/s

Delete 42677/s 34853/s 13176/s 16739/s
Delete (Batch) 43251/s 35582/s 13447/s 17689/s

Status 59486/s 40422/s 70950/s 1818030/s
Status (Batch) 524123/s 146697/s 2186016/s 2434915/s

Read 209.0 MB/s 183.3 MB/s 262.3 MB/s 5.7 GB/s
Read (Batch) 2.1 GB/s 1.9 GB/s 2.0 GB/s 6.0 GB/s

Write 210.3 MB/s 170.0 MB/s 197.0 MB/s 1.1 GB/s
Write (Batch, 4KiB) 2.1 GB/s 1.8 GB/s 992.9 MB/s 1.2 GB/s
Write (Batch, 128KiB) 2.1 GB/s 1.9 GB/s 3.3 GB/s 7.3 GB/s

Create-delete 41844/s 32635/s 63344/s 448943/s
Create-delete (Batch) 42181/s 32916/s 65426/s 823341/s

Table A.1.: Results of julea-benchmark when executed with di�erent backend con�gurations.
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