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Abstract

As high-performance computing systems have evolved over the years to address increasingly
complex questions, the speed of storage access has fallen behind and often poses a potential
bottleneck, particularly in scientific computing. But existing command-line tools for analyzing
the storage layout are largely textual, which can be unintuitive and makes it difficult to recog-
nize suboptimal data distributions and find their underlying causes.
To counteract this issue, I developed interactive visualizations that provide an intuitive way of
detecting and exploring these inefficiencies in four steps: First, the existing textual representa-
tions are extracted from the system and afterwards parsed into usable formats. Subsequently, a
visualization library is used to transform the parsed data into graphs, multiple of which can
finally be connected to create an interactive visualization.
Interactive visualizations serve as a good tool for illustrating storage imbalances and finding
potential causes. However, effectiveness can vary depending on the distributed system, use
case, and user.
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Chapter 1.

Introduction

1.1. Motivation

In recent decades, the rapid advancement of computers has led to significant improvements
in their speed and processing capabilities. Alongside these advancements, the problems they
are used for have also increased in size and complexity. Be it simulating much of the earth for
better climate predictions and weather forecasts, mimicking the human brain to create ever
more intricate artificial intelligence, or modeling the molecular structure of proteins to find
and improve cures for various diseases.

These supercomputers provide the computing power necessary by massively parallelizing their
workload across numerous nodes. Nodes can be bundles of processors for computing small
parts of a larger problem or storage devices to record the necessary data for and results of
computations. For instance, distributed systems like the "HLRE-4 Levante" [DKRZ, nd] can
comprise nearly 3000 computing nodes with over 370,000 cores, enabling approximately 14
quadrillion mathematical operations per second and offering over a hundred petabytes of
storage. More advanced supercomputers can achieve even higher performance. This makes
them expensive to build, keep cool, and supply with electricity, which is even more expensive
for the environment. Thus, using all the available resources as efficiently as possible is not only
an economic imperative, but also an ecological one.

For this, it is important to use all available storage devices roughly equally, to parallelize data
access and balance the data load. 100 SSDs are not very helpful if the first 50 are filled to the
brim, while the other 50 stand around empty. While such extreme cases are unlikely, similar
situations are rather common. Both files and the storage devices they are recorded on are
constantly in flux, with new ones being added and old ones removed or changed. Distributing
data equally is a constant task that never ends.

But existing tools to analyze the storage layout of a distributed system are solely textual, con-
sisting of thousands of lines of dense text. This makes it difficult for humans to spot outliers and
potential problems, grasp the entire architecture, and find the cause of inefficiencies quickly.
Visualizing the extensive text-based data can help users better understand their system. By
utilizing charts, large amounts of information can be condensed and presented in an under-
standable fashion. Allowing users to interact with these charts empowers them to compare,
correlate, and select different aspects to improve their understanding even further.
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1.2. Goals

Hence, the primary focus of this thesis is to create novel tools that transform the textual outputs
of existing command-line utilities into the aforementioned interactive graphs. These visual
representations aim to provide users with a clearer and more comprehensive understanding of
the storage layout, enabling them to quickly identify patterns, trends, and anomalies that may
not be readily apparent in written format.
As this is a mostly underdeveloped aspect of supercomputing, it remains uncertain what is
feasible or not, for which users and systems: Each distributed system varies in its approach to
storage and might not record some critical information or restrict access to it. Therefor, I will
also illustrate which visualizations could be used more generally, and which ones are specific
to a unique system, noting who could achieve this.

As such, the research question I strive to answer in this thesis is: How can interactive visual-
izations enhance the understanding of the storage layout of distributed systems like Lustre or
Ceph?

1.3. Outline

The remainder of the thesis is structured as follows: After this introduction, where I explained
the importance of visualizing the textual outputs of distributed systems, I go over the necessary
background information to understand this thesis: the inner workings of both distributed
systems I worked with, Lustre and Ceph, as well as the visualization libraries I used and the
basics about these visualizations.
Afterwards, I focus on the design of the tools I developed and how the textual storage informa-
tion of distributed systems is gathered, then parsed to extract the interesting data and turn
it into a format that can be read and turned into graphs by the visualization tools. Finally,
the different graphs are connected together to provide an increased level of interactivity that
allows for a better understanding and exploration of the storage layout.
Then I quickly go over related works of other authors that already build similar visualizations
for supercomputers and show how they differ from my work.
Thereafter comes the evaluation of the tools I developed, describing the environments I per-
formed my tests in and interpreting the results I gathered. Last but not least is the conclusion,
where I discuss which parts of my work succeeded but also where it fell short, and thus where
future works might pick up to improve and add to the tools I developed.
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Chapter 2.

Background

In the following, I will provide an overview of the fundamentals of the two distributed storage
systems I experimented with, Lustre and Ceph, as well as briefly mention other similar systems.
Afterwards, I will introduce the visualization libraries used, Plotly/Dash, and go over the basics of
graphs, the different kinds there are, and how and when to use them.

2.1. Distributed Storage Systems

2.1.1. Lustre

Lustre is a distributed file system that is used by many supercomputers for large-scale storage
and access to files by potentially hundreds of thousands of users. To achieve this, it is made up
of five components [Lustre, nd] [Lustre, 2010]:

1. The Object Storage Targets (OST), the physical devices that store the files, be they HDD
or SSD. But users can not simply access these OSTs directly, as this might pose a security
risk and allow malicious actors to corrupt the data. Instead, they can only communicate
with an Object Storage Server (OSS) that manages one or several OSTs and handles the
input and output (I/O) requests.

2. To store the namespace metadata about the files, be they filenames, file layouts, or access
permissions, Lustre uses storage devices called Meta Data Targets (MDT), though these
can also only be accessed through an intermediate server, the Meta Data Server (MDS).
They help users find the correct OSS for their I/O request and give them the location
of the desired data. That is, if they have the necessary permission to do so, which the
MDS also checks. But they do not handle the I/O operations because the OSSs do so
themselves as needed, avoiding a bottleneck at the MDTs.

3. To store information about its configuration, Lustre has a Management Server (MGS)
with a corresponding Management Target (MGT) as its storage device.

4. Clients are the users reading and writing files, tasking MDS with the creation or deletion
of files, and much more.

5. To connect all the different parts Lustre uses Lustre Networking (LNet), a high-speed data
network protocol that works on various network technologies like Ethernet [Metcalfe and Boggs, 1976]
or InfiniBand.
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Figure 2.1.: Schematic architecture showing the five components of Lustre from [Lustre, nd]

Figure 2.1 illustrates the relationship between these components: At the bottom are the clients
which communicate with the Management, Metadata, and Object Storage Servers that pro-
vide the interface to their respective Management, Metadata, and Object Storage Targets, all
connected through LNet.

To utilize multiple storage devices for faster parallel access, files can be striped across several
OSTs. How large these stripes are, over how many and which devices they are stored can be
both manually configured or set by the default configuration of a directory. The many stripes
are then distributed over the OSTs in a round-robin manner. While striping a file across more
devices increases the bandwidth at which it can be read and written, it also incurs an overhead
cost for managing all the stripes and increases the risk of contention. Finding a balance between
the two is crucial. For optimal performance, it is also good practice to use all storage devices
roughly equally so that there is no unnecessary congestion or conflict over resources.

Sometimes, especially for very large files, it is helpful to use a Progressive File Layout (PFL)
where certain parts of the file are striped differently depending on their size, because as a file
grows or shrinks in size the best way to stripe it also changes. Users can specify byte ranges
and how the parts of a file in those ranges should be striped. The example in Figure 2.2 of a
storage layout might be created with the command "setstripe -E 4M -c 1 -E 64M -c 4 -E

-1 -c -1 -i 4" where the first 4 MB of a file would be split over just a single OST into 1 MB
parts. Till 64 MB it would be striped over four OSTs and the rest of the file would be distributed
over all available OSTs.
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Figure 2.2.: Exemplary Progressive File Layout from the Lustre Manual [Lustre, 2010]

2.1.2. Ceph

Ceph [Ceph-Foundation, nd] is, similarly to Lustre, a distributed storage system that can store
petabytes of data on potentially hundreds or thousands of Object Storage Daemons (OSD).
In contrast to Lustre Ceph uses an algorithm called "CRUSH" [Weil et al., 2006] to store and
replicate all files on the cluster, while allowing clients to use the same algorithm to access
their desired files. Through CRUSH it has self-healing capacities and can recover most device
failures. It can also quickly reshuffle data when old OSDs are removed or new ones added, with
minimal work load.

Ceph is made up of these four daemons:

1. as mentioned OSDs actually store the objects and peer with each other to verify their
integrity, keep up to date, distribute the data load and communicate the state of the
cluster. This means that a lot of work can be done by them among themselves, with no
central bottleneck.

2. Ceph Monitors keep track of the cluster membership, so which OSDs are currently in
and working, and which are out of the cluster and currently at least not usable. It also
authenticates clients, coordinates the other components and provides external services
with an interface to the cluster.

3. Ceph Managers perform bookkeeping and maintenance tasks, recording the perfor-
mance of the cluster and providing the information for people to oversee Ceph.

4. Ceph Metadata Servers store, as the name suggests, all the metadata and, for example,
tell users where to find a desired file, though the specific OSD still serves this request
itself.
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As can be seen in Figure 2.3, to determine the placement of an object in Ceph, a user or
application first needs to retrieve the cluster map from a Ceph monitor. With the cluster map
and the name of the object, it is then possible to calculate the location of the object and read
from or write to the correct OSD.

In conclusion, when storing a file of any kind, Ceph typically breaks it down into many small
objects that belong to a pool that groups similar files and their objects into a single unit. This
pool is then broken down into a certain number of placement groups, and each object is
pseudo-randomly mapped to one of them. Only these PGs are then stored on an OSD and
potentially replicated onto certain others, depending on its pool parameters.

(a) The Ceph placement procedure

(b) A single file is split into a number of objects, that all belong to the same pool. All object in the pool
are pseudo-randomly distributed across placement groups, which are stored and replicated on OSDs

Figure 2.3.: Overview of Ceph and how it stores a file from [Weil, 2019]

2.1.3. CRUSH Algorithm

While Lustre uses explicit metadata to keep track of its data, Ceph instead relies on a mapping
function to empower clients to efficiently both find old and place new data, while adapting
to changes in the topology of the system. This mapping function is the Controlled, Scalable,
Decentralized Placement of Replicated Data (CRUSH) algorithm [Weil et al., 2006]. It distributes
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data by taking the state of the system, the pool parameters of the pool the object is in, and
the placement group to determine the primary and secondary storage devices that an object
should be stored in.

The state of the system is encoded as a hierarchical cluster map that reflects the topology
of the physical storage resources. In this tree all storage devices are represented with leaves
and can be grouped together into inner nodes/buckets to reflect the physical topology. Several
devices may be grouped into a host, which is part of a larger rack, which in turn is one of many
racks in a room. A room might be part of a data center, and all data centers together make
up a whole system. This allows CRUSH to take the physical location and dependencies into
account, as these can be the source of concurrent hardware failures and can easily lead to data
loss. Ceph gives all storage devices a weight metric that corresponds with their capacity. The
more a device can store, the higher its weight, and the higher the likelihood that it is chosen to
store an object. A bucket has the combined weight of all its children.

The pool parameters are the placement rules that determine how objects in a certain pool (a
logical grouping of files with similar attributes or function) are stored and replicated. When
working with hundreds of devices, some will inevitably malfunction. These rather sporadic
and random failures can be mostly absorbed by replicating files across two or more devices.
Larger incidents like a water leak might damage all hosts and their disks in a specific rack, or
a cable fire could take out all devices in an entire room. To guard against these concurrent
failures, it is paramount to save copies of the data in different places to reduce the chance that
natural and man-made disasters lead to the complete loss of data. CRUSH decides how and
where a file should be stored with placement rules. These data distribution policies determine
how many copies need to be stored where, and for which type of data, on which type of device.
A rule that distributes three replicas of a file across three cabinets in the same row can be seen
in figure 2.4.

Figure 2.4.: CRUSH placement example from [Weil et al., 2006]

Finally a placement group (PG) is a collection of objects in a pool that offers a level of
indirection between pools and storage devices to help with data placement, recovery, and
balancing. It is much easier to map 100.000 objects to one PG and this PG to several storage
devices, than to individually map 100.000 objects to devices. Moreover, the amount and status
of physical devices constantly change as new devices are added and defective ones are removed.
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It is much easier to just update the perhaps dozens of placement groups affected by a change,
instead of potentially millions or billions of objects. For this to work well, it is generally
recommended to have between 50 and 100 placement groups per storage device. An object
is placed in a placement group by taking a hash of its name and, with a modulo operation,
reduce the result to a valid placement group identification number (pg_id = hash(obj_name) %
number_of_PGs).

2.1.4. Other Distributed Systems

In this thesis, I have only looked at the aforementioned two systems, as they are quite popular
examples that I had access to. But there ar a wide array of similar distributed systems that I
will briefly mention now:

One popular system of these is Hadoop [Hadoop, nd], which is based on the Hadoop Dis-
tributed File System (HDFS) and the MapReduce programming model. It consists of several
nodes that store data and can work efficiently in parallel on partial solutions with their local
data. A master node manages jobs, tracks their progress, and finally combines the sub-solutions
of several nodes into a final one. To do this, it uses Map-Reductions: In the mapping phase
it filters and sorts the data to create key-value-pairs of the desired information. These tuples
are then reduced by combining/summarising the many small, simple solutions into fewer and
fewer big solutions. It is very fault-tolerant as it defends against disk failures by replicating file
data across several storage devices, depending on the specification of the user.

An older technology is GlusterFS [Gluster, nd] which is quite similar to Lustre: It consists
of storage servers called bricks that are grouped together into volumes, where all the servers
share a single name space. Files can then be distributed and replicated across several bricks
in a volume, ensuring high performance through parallel access by the clients as well as fault
tolerance against device failures. To adjust the capacity as needed, it is possible to add more
bricks or remove unused devices. It is a rather simple system, but more complex operations
can be implemented through translators that sit between the clients and server, to perform
operations like access control or data migration.

A third example is BeeGFS (Bee Giant File System) [Herold and Breuner, 2018]. It is a rather
simple and flexible system consisting of a number of storage servers that save smaller chunks
of files for faster parallel access. Metadata servers then manage the metadata of the files such as
the location of the many chunks of all the files and who is authorized to access which. Clients
get the necessary information for reading or writing a file from a metadata server, but they are
not involved in any actual I/O operations to avoid bottlenecks at the metadata servers.

2.2. Visualization

2.2.1. Plotly and Dash

While it is possible to create visuals with most programming languages, doing so is extremely
complicated and time consuming, which is why over the years programmers have developed
visualization libraries for most programming languages. These can range from a rather low-
level libraries that offer rather limited visualization capacities and leave a lot of room for the

8



individual computer scientist to adapt it to their use case. To very high-level ones like Bokeh
and Plotly that can take over a lot of busy work, but through their added complexity can be
harder to adapt for very specific problems and might work in ways not necessarily intended.

In this thesis, I used Plotly and Dash [Plotly, nd], as these are powerful tools that offer a wide
variety of graphical representations and a relatively easy access to helpful features, be it color
bars, zoomable graphs, or interactivity between several graphs and menus. The libraries offer
an application programming interface (API) where programmers can access a function from
the library and give these calls the necessary information. This ranges from what data should
go to the x-axis, which to the y-axis, if these elements should be colored and have a certain
size, and if so, which color or size for which element. An application build with Dash is also
called a Dashboard,

Plotly and Dash are built as JavaScript libraries that can be accessed with Python for easier
preparation, as the interactive visualizations are realized through web pages that necessarily
utilize HTML, CSS, and JavaScript.

2.2.2. Graphs

With visualization tools like Plotly, it is possible to turn large amounts of data that are difficult
for humans to understand into more readable graphs. It might be difficult to see trends or
find outliers when looking through thousands of lines of text, while it is much easier to see
groups and concentrations in a plot or spot elements that have a distinct color from the rest.
For this to work well, it is important to use an appropriate graph for both the type of data that
is visualized and the goal one wishes to achieve. [Heer et al., 2010] [Tufte, 1983]

Data can be roughly divided into three types: categorical, numerical, and ordinal:
Categorical data are qualitative instead of quantitative and represent certain categories/groups,
be they countries, users, expenditures or cultures. While it is possible to represent them with
numbers, they are only another symbol and do not have any mathematical meaning.
Numerical data, on the other hand, are numbers that one can calculate with and order. They
are quantitative and often comprised of measurements, like the population of a country, the
number of bytes used on a disk, or the price of a stock.
Ordinal data are a mixture of the two: categorical data that has an innate order/hierarchy.
This could be the satisfaction level in a survey, where "very happy", "happy", and "miserable"
have a clear order from most to least satisfied.

To visualize them, there are many types of graphs that have been developed over the centuries,
of which I will present a selection of common ones:

• Bar charts are a good way to visualize mostly categorical and ordinal data, where each
category is represented with a bar and the height corresponds to a certain numerical
value of that category.

• Pie charts are another way of showing a combination of categorical and numerical data,
where the area/degree in a circle shows the portion of a category. Very similar to them
are tree maps that show the parentage of a category with the area of a rectangle. They
are often preferred over pie charts, as these can become difficult to read when showing to
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many categories. Degrees in a circle are harder for most humans to estimate and compare
than the length of rectangles. Tree map s can also be used to denote a hierarchical relation
between elements by creating ensted rectangles.

• Scatter plots are useful for showing the relationship between two numerical values for
even large numbers of data points.

• Histograms are somewhat similar to bar charts but show the frequency of certain nu-
merical ranges, where choosing a good size for these ranges can make or break the
visualization.

• Line charts track a value over time and are thus most useful for numerical data that also
has a time component, like stock prices.

• Finally, there is also a wide variety of map graphs where the geographic location is used
to either place other graphs on a map or to change elements of the map itself. It is most
useful for categorical data like states or streets, but also for numerical data like longitudes
and latitudes.

(a) A bar chart of the results of the 2021 and
2018 Bundestagswahl in Magdeburg from
[Der Bundeswahlleiter, 2023]

(b) This historical line chart from [Tufte, 1983] uses
the space between two lines to show the trade
balance between Ireland and England

(a) A pie chart that displays the expenditures of
the German government from [BMF, 2023] per
resort

(b) A colored map of european Corona cases in
March 2020 from [Schach et al., 2020]
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These and many other charts can be used by themselves, but it is sometimes preferred to add
additional dimensions to them to compare more aspects of the data.
One way is to adjust the size of an element. In a scatter plot, this means enlarging the data
points with either the area or radius/diameter corresponding to a third numerical value. When
working with several pie charts, the size of them could represent the total value of all the slices.
Multiple pie charts could show the makeup of a country’s exports while the size of the chart
shows the total tonnage.

Another popular dimension is color: this might mean coloring categorical data with distinct
colors to better differentiate between them, like giving the slices in a pie chart or the points in
scatter plot distinct colors corresponding to their category.
In some contexts, color can be associated with a certain category and thus should be used
accordingly: most political ideologies and their corresponding parties have colors associated
with them, be it red for socialists, black for christian democrats, yellow for libertarians, green for
environmentalists, and brown for fascists. Whereas the individual departments of a government
rarely have any deep seated connections to specific colors.
But color can also be continuous and represent a numerical value for which many graphs have
a color scale that shows the range of a value and the corresponding color. The bar for a storage
device might be colored to show its fill level, from blue for empty to red for full, or a state
could be colored from white to orange to red and finally to black, depending on the amount of
COVID cases. In both cases, the color scale has an easy-to-understand range that is established
in our culture. Color scales like the rainbow scale do offer more distinct colors, but they make
it harder to judge a color’s value.

Other dimensions, like the texture or shape of an element are also possible and can work well,
especially for categorical data. But they are more difficult to use and might quickly overwhelm
the viewer with visual clutter, which can already be a problem when using just size and color.
It is just as important not to show certain information as it is to do, so that the graph can be as
simple and easily understandable as possible.

Finally, it is often useful to layer several graphs or graph elements next to each other, allowing
viewers to easily compare them. In a bar chart, this can mean grouping several thematically
coherent bars together, like election results from different years, or stacking bars on top of each
other if they are all subdivisions of a larger whole. In a line chart, layering means showing
how several values change over time, for example the imports from and exports to a specific
country. To differentiate the other elements, color is often helpful. Though depending on the
number of layered elements, the graph can very quickly become illegible.

Summary

In this chapter we looked at the basics of Lustre as well as Ceph and its underlying algorithm
CRUSH, learning how they allow for the storage and access of hundreds of Tera- or even petabytes.
Then we briefly learned about Plotly and Dash, two of many visualization libraries that create
interactive graphs with JavaScript. Last but not least, we looked at some fundamentals of these
graphs, what types there are and how they can be used.
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Chapter 3.

Design and Implementation

With this background information on the systems and tools we are working with, we can now
return to the initial research question and delve into the specifics:
What exactly do we want to visualize? Are there shared aspects among the storage layouts of all
distributed systems, and what are interesting components unique to Lustre and Ceph?
But also how can we visualize them? What are the necessary steps to achieve the desired interactive
graphs and how did I implement them for the specific systems in question?

3.1. Design Goals

3.1.1. General

1. A commonality between all distributed systems is their use of storage devices, as regard-
less of whatever unique data distribution method they utilize, data still need to be stored
somewhere. To ensure an even and thus efficient distribution, it is crucial to always have
an overview of the cluster that shows the workload of every storage device.
Supplementary information about the devices can be invaluable when encountering
irregularities, as this can provide valuable insight into potential causes. These might be
the type of device (HDD, SSD, etc.) or the date it was added to the cluster, though this
in-depth information is not always readily available in all distributed systems.

2. In contrast to the previous high-level view, often a more focused analysis of just a
handful or even a single file is needed, as applications might read from and write to a
small collection of files. In those cases, it is important to detect potential inefficiencies
or congestions as well as discrepancies between the theoretical data distribution a user
intended and the actual result in practice. Moreover, as mentioned in the CRUSH section
(2.1.3), concurrent failures can be devastating and lead to permanent data loss. Hence,
the physical location of a file and its copies is of great significance. For larger files in
particular, an even distribution across multiple storage devices is very beneficial, as
it allows the system to leverage the combined bandwidth of several storage devices
simultaneously, resulting in faster file retrieval.
To visualize this, a general goal would be to show the distribution of one or several files
across different devices and display the utilized storage. This can be rather difficult or
unhelpful when working with distributed systems that are not file-based but instead
object-based, like Ceph. These systems do not directly store files but instead split them
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into potentially thousands of objects first and only then assign storage devices to them,
adding a level of indirection.

3. Finally, in some cases, an entire folder is of interest, whether it is a user’s personal
folder, a project-specific folder, or a shared folder for common resources. Since these
directories can contain large amounts of files, it becomes necessary to consolidate the
information and illustrate how the files are distributed across the whole storage system
to ensure a balanced distribution. In cases where an uneven distribution happens, it can
be helpful to have other metrics readily available to quickly identify the source of the
issue or provide hints regarding the problem. These might be metrics such as the age,
ownership, or size of the files, as these might have a bearing on the maldistribution.

While these are quite generic wishes for the visualization of pretty much all distributed systems,
there are also very system-specific ones that rely on their unique characteristics:

3.1.2. Lustre

For Lustre, a notable feature is its (progressive) file striping, which empowers users to explicitly
define how and where a file should be stored. A user can specify how many slices are on which
Object Storage Target, and even define how various sections of a file should be handled to
accommodate file growth considerations.
This hands-on approach is quite powerful and gives the individual user a lot of agency to
optimally store files, but also the responsibility to do so correctly. Visualizing where the
individual stripes are actually stored could aid in asserting that the defined behaviour aligns
with the intended one, as mistakes can easily creep into these layouts.

3.1.3. Ceph

Ceph, on the other hand, does not offer the tools to directly control the placement and replication
of individual files. Instead, this is done indirectly by adjusting various variables, such as the
number of placement groups for a given pool and placement and replication rules.

Therefore, visualizing the quite interwoven relationship between files, objects, pools, placement
groups, and OSDs could greatly help in understanding the impact of these variables and
making adjustments to them. Ceph itself provides valuable information about these different
components, such as the state of a placement group or the health of an OSD.

3.2. Implementation

To achieve the aforementioned goals, I have implemented the following process that divides the
visualization of the storage layout into four steps: The first step involves obtaining the textual
outputs from the server, which are then parsed and cut into usable tables, lists, or dictionaries.
These refined formats can then be used as the basis for Plotly graphs, which in turn can be
grouped and connected into an interactive dash application.
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Figure 3.1.: The four steps I implemented to create interactive visualizations out of

3.2.1. Get Information

In many cases, there are simple commands to initially get the raw storage layout information
from the distributed system. These can be as short as "ceph osd tree" in Ceph or "lfs df"

in Lustre and provide an overview of all the storage devices. In these cases, it is sufficient to
simply send the command to the server and redirect the response to a text file or, alternatively,
to a variable to start parsing immediately.
Ceph also offers the command "ceph pg dump", which does not just dump vast amounts of
information about every single placement group, it also includes information about every pool
and additional information for the OSDs that is not included in "ceph osd tree". This, too,
can be simply written to a text file.

But getting information about individual files and especially entire directories can be much
more difficult:

Lustre: Gathering the file striping information of a single file can be easily done with the
command "lfs getstripe <file-name>". If more than one file is needed, multiple of these
commands have to be sent.
But for a whole directory and its subfolders it is necessary to first collect the path of all files
in it and then individually send "getstripe" commands to the server for every file. In this
step, it can also be beneficial to save additional statistics for each file, like the size, owner, and
date of last access/modification/change, as these details can sometimes explain unusual file
distributions. The size information is also crucial for certain advanced visualizations. However,
sending console commands for every file can quickly get out of hand for larger directories, as
they consume a significant amount of resources and may overburden the system with excessive
requests.

Ceph: Files in Ceph are typically split into numerous objects, which are then pseudo-randomly
distributed across placement groups. It is necessary to first get the list of all objects in a pool
with "rados -p <pool-name> ls". A pool might contain just a dozen objects, but it can also
easily include several hundred million objects. Afterwards, it is possible to find the objects
belonging to a desired file and for each object the corresponding PG and OSDs through the
command "ceph osd map <pool-name> <object-name>".
This has the same problem as the directory analysis in Lustre, but now for each and every file.
Sending thousands of "osd map" commands to the Ceph cluster for every single object a file is
split into would put the system under immense stress, not to mention actually analyzing an
entire directory in Ceph this way.
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Regrettably, at least the Ceph system I used was more restrictive than Lustre, and I was unable
to execute any of these commands myself. Instead, I had to rely on the administrator of the
cluster to execute the commands and provide me with the results. As such, typical users may
not have access to any of this fundamental information.

3.2.2. Parse Information

After receiving the raw data from the distributed system, it can be parsed into a format usable by
the visualization library, which typically means a list, or a table format like pandas DataFrame.
A DataFrame is generally preferred because it allows for querying the created table and selecting
rows, columns, or cells depending on any desired conditions, thus being quite fast.
Though for some formats, such as the file striping in Lustre, the data is already in a dictionary-
like format. In these cases, it can be more efficient in terms of speed and space to retain the
dictionary layout and save it as, for example, a JSON file. While it is possible to reconstruct
this striping data into tables, doing so would result in significantly larger tables with a lot of
redundancies, which may not be desirable.

With that being said, here are the different ways I parsed the four output text files:

Lustre (df) :

Figure 3.2.: Example output of the df command that lists the utilization and capacities of all
MDTs and OSTs in the /home partition

The first command to parse is the "df" command, which displays the use of every MDT and
OST in the system in a simple table-like format. This allows me to simply recreate the table by
going through each line in the textual output, splitting it and storing each device property in a
corresponding column.
In some systems, like the one I worked with, there is not just one table, but instead several
for different partitions like /home, /work, or /fastdata. Confusingly, a single MDT or OST can
belong to several of these at the same time, though its storage information remains the same.
As such, it would be possible to either discard duplicate targets or entire partitions. I decided
to simply store these, mostly redundant, copies as well, in case the exact partition of an OST
ever becomes necessary in the future.

Lustre No PFL (getstripe):

Nearly as simple is the striping layout of most files: To parse the header, so the first few lines
with general information about the file striping, it is enough to split each line and store these
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Figure 3.3.: Example output of the getstripe command that shows the layout of a single file
without PFL

key-value pairs in a dictionary until hitting the OST-table. There, each line is then added as a
dictionary to a list of all used OSTs. Parts of this information remain unused in this thesis, like
the layout_gen, pattern, or stripe offset, but are still kept in the parsed result for convenience
and possible future visualizations that might require them.

Lustre PFL (getstripe):

(a) Header and first component that is in use
(b) Second component that is not yet ini-

tialized and thus has no OSD data

Figure 3.4.: Exemplary progressive file layout with an active and an inactive component, the
different parts are outlined

Files with a progressive file layout consist of several blocks: a first "header" block with three lines
of general information about the file layout, and then as many blocks as there are components to
the PFL. These blocks are simple key-value pairs that can be stored into dictionaries just like the
non-PFL files but also contain additional information about the component. The "lmm_objects"
show the OSTs this part of the file is stored on, though in a dictionary format, instead of the
table format the standard files are stored in. Each OST-dictionary is added to a list, and all
individual component-dictionaries are then also grouped in a list, creating a nested structure.
These different parts can be seen in figure 3.4a.
However, not every component of the layout has to be active (marked by an "init" flag). If a file
is small enough, then some components are not yet active and have no OST information, like
in figure 3.4b.

Lustre Directory (getstripe):
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The same procedure can also be done for a whole directory and all its sub-folders. As mentioned
in the previous section, this requires a list of all files contained in a directory and separate
"getstripe" commands. Each parsed file is then added to a list, creating a single large JSON
file.

Ceph (osd tree):

Figure 3.5.: OSD Tree

In contrast to the rather simple procedures before, recreating the storage hierarchy from a
Ceph tree is quite a bit more complex. To visualize it as a hierarchical graph like a tree map, it
is necessary to have a list of all components and a second list with their respective parents. For
this I created the following algorithm:

1 tree = open("tree.txt")
2
3 # starting with the root , initialize the outputs and helper variables
4 root = tree.pop().split()
5 names , parents = [root [2]], [""]
6 hierarchy , weight = [root [2]], [root [1]]
7
8 for line in tree:
9 attributes = line.split()
10 # if only 4 columns => bucket (ID, Weight , Type , Name)
11 if len(attributes) == 4:
12 # no weight => bucket is already deleted , skip
13 if attributes [1] == 0: continue
14
15 names.append(attributes [3])
16 # remove completely read buckets
17 while weights [-1] < 0.1:
18 hierachy.pop(-1)
19 weights.pop(-1)
20
21 # add the parent and adjust its weight , add new bucket to

↩→ helper lists
22 parents.append(hierarchy [-1])
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23 hierarchy.append(attribute [3])
24 weights [-1] -= attributes [1]
25 weights.append(attributes [1])
26
27 # otherwise => leaf (ID, Class , Weight , Type , Name , Status ,

↩→ Reweight , Pri -Afff))
28 else:
29 names.append(attributes [3])
30 parents.append(hierarchy [-1])
31 weights [-1]-= attributes [2]
32

Listing 3.1: OSD Tree Parsing Algorithm

The first step is to open the text document and initialize the output lists for both the names of
the leafs or buckets, and their respective parents, as well as the helper lists "hierarchy" and
"weights". They are necessary to keep track of previous buckets and the amount of weight that
was "used up" when descending the tree.
Each output and helper list is immediately filled with the root information of the first line, as
the root bucket has no parent and is an exception that needs to be handled separately.

From this point on, the algorithm goes through each line sequentially. If it is a bucket, recog-
nizable by a smaller number of attributes, it is crucial to first check its weight. Deleted buckets
have a weight of zero and can remain in the tree for some time, so they have to be skipped.
Otherwise, its name is added to the "names" list.
Then any buckets in the hierarchy that were completely processed are removed from both
helper lists. As mentioned in chapter 2.1.3, each OSD has a weight according to its storage
capabilities. A bucket’s weight is therefore the sum of all its children, be they OSDs or other
buckets. By subtracting the weight of each child as they are being read from the parent’s
weight, it can be assured that a bucket has been fully read when its weight reaches zero. Or at
least close to zero, as floating point arithmetic means that rounding errors exist and a bucket’s
weight is not exactly the sum of its children.
After the helper lists were cleaned, the parent is the latest bucket in the hierarchy list and can
simply be added to the parent list. Afterwards, both the name of the current bucket and its
weight can be appended to the helper lists to correctly assign its children to it while subtracting
its weight from its parent.

If the line is not a bucket, it is instead an OSD whose name can simply be added to the name
list, with the last added bucket in the hierarchy as their parent. Similar to the buckets, the
weight of this OSD is also subtracted from the last entry in the weight list, in order to correctly
assign OSDs to their correct bucket.

The end results are two lists, one for the name of each element and one for their respective
parent, which can later be used by Plotly.

Ceph (pg dump): The command "ceph pg dump" is a powerful tool, showing not just extensive
placement group data, but also various additional information about the OSDs the placement
groups are stored on and the pools they belong to.

The first part consists of a large table containing all the placement groups for each pool, shown
in figure 3.6. Parsing this table is very similar to the Lustre "df" output, as it is enough to
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Figure 3.6.: A fraction of the total placement group data

simply iterate through each entry and extract the relevant information to a DataFrame. I only
utilize a fraction of the available information because much of the table is either uninteresting
in regards to the storage layout or adds redundancy in case of errors.
In a healthy cluster, some columns contain just zeros and are only interesting in the case of
errors. They can be important to note, but are rather uneventful in normal situations. Moreover,
certain columns are rather cryptic and lack explanations in the documentation.

Figure 3.7.: Pool summary

Shown in figure 3.7 is the second part, which provides a summary of some of the above
placement group information, but this time for each pool these PGs are in. It shows how many
bytes and objects a pool has in total, how many of its PGs have any errors, and more. This pool
summary is also stored line by line in another data frame.

(a) First five columns of OSD information (b) other 3 columns, with the heartbeat peers on the left

Figure 3.8.: First five entries in the OSD part, the heartbeat peers are shortened for brevity’s
sake

Last but not least, there is a third table about the object storage daemons. While the "tree"

command provides the type and location in the cluster map for the OSD, this table goes beyond
that by providing additional information. It shows the total, available, and used bytes, as well
as the heartbeat peers. These OSDs have established a peer-to-peer contact, enabling them to
share the state of the system, monitor each other’s state, and "hear each others heartbeat", so
to speak. The table also displays the number of PGs saved on this OSD and how many of those
are primary placement groups instead of replicated copies.
This, just like the other tables, is also simply read line by line, recreating the columns to create
a DataFrame out of it.

3.2.3. Visualize Information

Once the raw data has been parsed and transformed into a usable format, it is then possible
to use a visualization library such as Plotly to create diverse graphical representations of the
data.
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Plotly provides two options for visualizations: a "default" version that allows users to choose
one of over 20 basic graphs and customize it as needed, and an "express" version that is already
customized for most common use-cases. Both take the form of functions that need either the
columns of a DataFrame or a list for each data dimension to generate graphs. For example, the
function to create a bar chart might look like this:

figure = plotly.express.bar(DataFrame, x="OST-ID", y="bytes-Used", color="Component")

figure.show()

For the general storage overview, a bar chart is utilized where each bar represents a storage
device and their height the total size. They are colored according to their utilization (used bytes
divided by total bytes), which allows users to quickly spot outliers. The total size is particularly
important for systems with a varied collection of storage devices. The variety can easily lead
to an uneven distribution, such as smaller SSDs overfilling quicker than larger hard disks.
Another approach involves dividing the bar into two sections, a lower bar representing used
storage and an upper bar representing the remaining available storage. This design leverages
skeuomorphism by mimicking the fill-levels of a glass, leading to more intuitive comprehen-
sion. But comparing fill-percentages becomes more difficult in very heterogeneous storage
environments due to the varying device sizes, as it requires more attention to compare the
height of four bars rather then simply discerning two colors.

(a) Storage device overview, color for fill level
(b) Storage overview, blue for used bytes, red for

available bytes

Figure 3.9.: Storage device overview examples

Lustre For visualizing the striping layout of a single file I choose a simple stacked bar
chart. This graph illustrates how much of the file is on which storage device and, when a
progressive file layout is applied, how each component is distributed by differentiating them by
color. While it would be feasible to show each individual stripe as a separate stack in the bar
chart, these slices typically have a fixed size of 1MB. As a file might have 1GB on a single OST,
cutting the bar into 100 pieces makes it very hard to read and render, with very little relevant
information gained.
Unlike most other graphs, where the data can be taken directly from the columns of a DataFrame,
for the Lustre file striping data, it is actually necessary to compute the location. For a "normal"
file this process is relatively straight forward. By accessing the file’s size with "stat(<file-

path>)", it can be divided among the OSTs it is stored on. Files with a progressive file layout
consist of several components that all need to be processed similarly.
Multiple file distributions are visualized in much the same way, but in this case, the color
indicates the file the slices belong to, and not the individual component.

To show how multiple files overlap on certain OSTs, especially for I/O considerations, a 2-D
heat map is used. This visualization requires more preparation, as it is necessary to do the
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Figure 3.10.: Single file distribution example

above procedure of getting the individual storage distribution for all files in each group. Then
the distribution between the two groups can be compared, storing the overlap for each OST.
This provides a good metric for measuring potential congestion between two groups of files.

Figure 3.11.: Heat map of a pair of three files, that overlap the most on OST 1

To visualize the additional statistics of a directory, scatter plots are used for the three time
measurements (atime, ctime, mtime), showing the amount of files last accessed, changed, or
modified on any given day. This approach aggregates the data and is effective even on thousands
of files spanning decades.
The ownership is shown through pie charts, as they are sufficient for a quick overview to see
which users or groups own most of the files. While a pie chart does not support in-depth
analyses, such investigations are seldom necessary in this case. For the size a histogram is used,
to show how many files lie in a certain byte range. The exact number for each data point is
less important than the overall picture to spot larger trends. A histogram excels at aggregating
massive amounts of data into a digestible size, which is important for very large directories.

Ceph: For the Ceph storage overview, a bar chart is utilized similar to Lustre, but in addition
to this, a tree map. This allows for an understanding of the physical storage layout, meaning
which OSDs are in the same host/row/room as others. That data also theoretically exists in
Lustre and any other distributed systems. They distribute their storage devices, so it is always
interesting to know where they are and which devices are next to each other, but it is not
always as easy to access and central to the entire system as in Ceph.

For the placement groups, I use a scatter plot, with the size in bytes as the x-axis and the number
of contained object as the y-axis. This creates bands or clouds that almost automatically sort
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PGs into pools. The number of placement groups per pool defines how many objects each PG
on average has, while the size can vary wildly depending on the specific objects that happen
to end up in the PG. The color of the scatter plot represents the corresponding pool, though
another option would be to color them green, yellow, or red depending on the state of the PG,
as monitoring the health of a placement group is also crucial. For the pools, I have opted for a
bar chart, as this allows any interesting available information to be on the y-axis, with each
pool on the x-axis. Although using color to incorporate more dimensions would be possible, I
decided against it to keep the graph as simple and readable as possible.

3.2.4. Connect Information

Though these individual graphs are already sufficient for some tasks and allow for a better
understanding of the storage layout, adding additional interactivity between them allows us to
explore the data even more.

Plotly has the advantage that it already offers a limited amount of interaction in a graph out of
the gate, as it is possible in most graphs to zoom in, pan across, and hover over specific data
points for more additional information. This can be enhanced by explicitly defining the parts
that should be shown.

Using Dash, it is possible to define a HTML layout of boxes, place graphs or menus in them, and
define their interactive behaviour through callbacks, completely changing which data graphs
display and how they do so.

As this level of complexity is sometimes neither necessary nor helpful, I decided to only create
Dashboards for the Ceph overview and Lustre directory distribution. The other singular graphs
are arranged in notebooks, which allow for a more "user-controlled" interactivity where one can
freely change code and create the connectivity by hand, which is more difficult and hands-on
than a Dashboard, but also provides more flexibility and allows users to more freely add or
change the existing tools to their needs.

Lustre directory overview: To improve the directory visualization for Lustre, I combine the
main distribution over the OSTs with the additional statistics with three graphs: one for the
three times, one for both the group and user ownership, and finally one for the size. As the
first two have several versions of basically the same information, I use buttons to allow users
to switch between a-, c-, and m-time, as well as between the user and group ownership, as
showing every statistic at the same time would necessitate very small graphs that are no longer
readable.
The user can then change for which files they want to view the statistics by selecting a group
of bars, so OSTs, in the main graph. With this selection, the program queries all the stored file
layouts for the selected storage devices and returns the aforementioned statistics graphs with
the updated data. Users can easily select OSTs that fall outside of the general pattern and see
how the files there compare to the rest. Are they newer, or perhaps a lot smaller or larger than
the rest? Were they added by a different person than the others? All these potential clues can
be quickly examined with this Dashboard.

Ceph overview: For Ceph I chose to connect the placement groups, pools, and storage devices.
To better customize the graphs, each has a drop-down menu that allows the user to change the
value displayed on the y-axis for the two bar charts of the OSDs and pools, and the color of the
scatter plot for the PGs.

23



The largest graph is a tree map for the OSDs that initially shows the device type of each OSD,
but when clicking on a bar from the OSD bar chart, it shows where its heartbeat peers are, to
show how the OSDs themselves are connected to each other. Initially, I aimed for a network
graph to show the connections, but as each OSD can easily have dozens of peers, this network
was essentially unreadable. When clicking on a placement group, the tree map shows the
primary and secondary OSDs it is stored and replicated on. The hierarchical representation
from the tree map allows for a quick assessment of the distribution, and whether it is spread
around enough to avoid most concurrent failures.

Creating this interactivity is the most difficult step, as especially multidirectional connections
like those in the Ceph overview have the potential for unintended behaviour. Some graphs
have built-in interactivity with themselves, which leads to certain callbacks breaking them.
This can happen with tree maps, where clicking on a node zooms in on it. Using a click-events
to change the whole graph creates both the new updated graph and the zoomed in view of the
clicked node, rendering both unusable. This problem prevents some more intuitive interactivity
and necessitates ugly workarounds, like needing a separate OSD bar chart to change the OSD
tree map.

Summary

In this chapter we have seen the visualization goals are: For a generic distributed system an
overview over the storage device utilization and file or folder distribution. For Lustre specifically it
is the file striping over the selected OSTs and for Ceph the relationship between PGs, pools, and
OSDs.
To achieve these the process I implemented can be split into four steps: First the raw textual data
has to be retrieved through various commands, then parsed into usable lists or tables. These
can be visualized into specific graphs by Plotly and in the end be connected into an interactive
Dashboard.
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Chapter 4.

Related Works

In this chapter I will showcase a selection of similar projects that other people worked on and
explain how they differ from what I have done. They range from more general works on storage
topologies, to specific Dashboards for Ceph and Lustre.

4.1. Interactive Analysis of Large Distributed Systems with
Scalable Topology-based Visualization

One of the few scientific papers on the visualization of distributed systems was written by Lucas
M. Schnorr, Arnaud Legrand, and Jean-Marc Vincent in 2013, called "Interactive Analysis of
Large Distributed Systems with Scalable Topology-based Visualization" [Schnorr et al., 2013].
It presents a scalable approach for analyzing the topology of a distributed system, but unlike
this thesis, it focuses on the transmission of data across the network instead of its storage.

It uses a very reduced set of visualization tools: monitored entities are represented with nodes,
edges between them indicate a relationship between the two objects. Typically, hosts are shown
as squares and links between them as diamonds, with their size being defined by the available
resource capacity. These forms are mostly white but filled with another color, like black, to a
certain percentage according to their utilization.

Figure 4.1.: Exemplary network analysis at three different timestamps from
[Schnorr et al., 2013]
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Figure 4.2.: A more complex example for a connection between networks from
[Schnorr et al., 2013]

The rather limited nature of this visualization approach means that even complex topologies
can be easily understood and congestions or bottlenecks identified. It also allows users to
change the scaling between the data and their graphical representations, as well as define their
position and distances when needed.

In conclusion, while the visualizations proposed by the paper also revolve around distributed
systems and allow for some interactivity (defining the analyzed time slice), they do not concern
themselves with the storage layout but instead with the bandwidth necessary for the trans-
mission of the data. They also restrict themselves to a rather minimalist representation and a
single graph type. This thesis on the other hand, tries to capture many different types of data
with an appropriate graph type and puts a bigger focus on color.

4.2. sonar4ceph

A purely Ceph-based work is "sonar4ceph" [JungJungIn, n d], that allows users to track and
show a variety of information about the relationship between placement groups, object storage
daemons, and pools, their respective performance, latency, as well as bandwidth utilization.
Similar to the work in this thesis, it shows the hierarchy of the OSDs with a tree map, though
it also includes the used and available space, as well as warnings about the health of the cluster.
Other graphs focus on the relationship between placement groups, pools, and OSDs, though
always in singular graphs without any interactivity between them.

(a) Line chart for the latency of each OSD
(b) Stacked bar chart showing the number of

PGs per pool and OSD

Although the graphs are aesthetically pleasing and professional, the readability can on occasion
be poor, especially when too many entities are drawn and colored over each other, like what
happened to the line chart for OSD latency in figure 4.3a. Other diagrams find clever ways to
display many interconnected metrics together. Figure 4.3b shows the relationship between
OSDs, pools, and placement groups through a single stacked bar chart mostly well, but makes
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it difficult to compare the PG count of especially the two top most pools between OSDs as the
bars constantly change their position.

Of the related works, it is perhaps the one closest to this thesis, though many parts of it focus
more on the performance of the cluster than strictly its storage. The visualizations do not
offer any interactivity between them. Instead, many different metrics are combined into single
(individual) graphs with varying degrees of success.

4.3. Ceph Dashboard

The built-in web-based Ceph Dashboard [Ceph-Foundation, nd] shows the overall state and
health of a Ceph cluster, including but not limited to information about the OSDs, Pools, PGs,
latency, and throughput. It is a mix of text-based status windows and graphical summaries to
assert the health of the cluster and to quickly notice damages or problems. Besides the storage,
it also allows administrators to have a look at the monitors and managers of their cluster.

As it is part of Ceph as a Manager Daemon module, it has access to every piece of information
in Ceph. In terms of the amount of data shown, it is superior to this thesis, where only a few
outputs were available and could be used for parsing and visualizing data. But in contrast, the
Ceph Dashboard displays no interactivity to connect the various graphs and puts a heavy focus
on performance instead of storage layout. As the name implies, it is also explicitly built only
for Ceph and does not work on any other distributed system.

4.4. Lustre Overview Panel from Grafana Labs

Although there are several projects that focus on visualizing the storage layout of Ceph, the
same cannot be said about Lustre. While some institutions and companies develop their own
visualization tools, little public information is available regarding them. One of the few works
regarding Lustre is an overview panel from Grafana Labs [Grafana, 2019].

This dashboard is more directed towards administrators who want a real-time overview of
their Lustre system, with a focus on pending (metadata) operations, IO bandwidth, and job
statistics. It is not concerned about the storage layout of the data, like this thesis, but instead
with the many read and write operations on the stored data, making it somewhat of the flipside
of this work.

Summary

As we have seen in this chapter, while there are some previous works on the visualization of
distributed systems, most are either more focused on the transmission of data than the storage.
Even the ones that do so often lack in depth in this department and do not offer any interactivity
for a deeper understanding.
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Figure 4.4.: Part of the Grafana Dashboard showing various IO-bandwidth and Data IOPS
metrics
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Chapter 5.

Evaluation

We have seen why visualizing the storage layout of distributed systems matters, how both the
distributed systems and visualizing works, as well as how the tools I designed work to achieve this
goal and how they compare to existing ones. Now we are going to evaluate these tools, seeing how
they function. But before any of that, we first have to familiarize ourselves with the distributed
system on which I conducted my tests:

5.1. Test Environments

5.1.1. Levante-DKRZ (Lustre)

The High Performance Computing (HPC) system "Levante" [DKRZ, nd] is an integral part of
the Deutsches Klimarechenzentrum (DKRZ) in Hamburg and was recently installed between
2021 and 2022. As the name implies, it is mainly used for various climate simulations, with its
most important being its contributions to the World Meteorological Organizations "Intergov-
ernmental Panel on Climate Change" report. It is also employed on dozens of other research
topics, whether these are paleoclimate models for improved isotope analysis in the alps, the
interactions between agriculture methods and the climate, or future climate change predictions
on the Arctic ice.

Levante has over 370.000 cores in 2832 compute nodes, made up mostly of AMD 7763 processors
of varying sizes with up to 14 Petaflops of peak performance. It also offers a total of 130 petabytes
of storage. The file system is organized into different partitions, as seen in the "df" paragraph
of section 3.2.2. Users have access to three partitions: a fast HOME file system where each
user can store important files such as shell scripts or source code. A WORK file system to store
the data and various model output that a project uses and produces, as well as a SCRATCH
file system that allows for the temporary storage of large amounts of data, but only for up
to 2 weeks. Other partitions are POOL/DATA for common computing resources, as well as
FASTDATA, and SW, which are more restrictive.

5.1.2. Ants-OVGU (Ceph)

Ants is the HPC cluster at the Otto-von-Guericke-University Magdeburg (OVGU) for university
scientific use, mostly for parallelized applications with a high network and memory demand.
It is made up of 26 AMD Epyc processors of a variety of specifications, and 6 Intel Xenon
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processors, totaling 700 cores. These are assigned to nine partitions for various groups to use.
Across three rooms Ants has 136 OSDs that offer over 200 terabytes of storage.

5.2. Test Results

In the following, I will go over the various visualizations I created and the different use-cases
they may or may not be adequate for.

5.2.1. Storage Layout Overview

General Overview: The first step to any analysis of the storage layout is perhaps to get
an overall view of the storage devices, which works very similarly for all distributed systems
and already provides an early warning for potential problems. As mentioned in section 3.2.3 I
tested two versions of displaying the storage utilization: In figure 5.1 and 5.2 the utilization is
denoted with a color scale, which works reasonably well.
Plotly allows for a wide selection of color scales, of which I prefer one called "thermal". It is
relatively intuitive and is used by some thermal image cameras that users might have experience
with. Most importantly in this case are the wide range of colors that allow users to differentiate
even slight differences in the storage device usage. I also experimented with a temperature
scale (blue-red) that has the advantage of being very intuitive, as most people have seen this
color scale in weather reports or thermometers. But as it is only comprised of two colors, slight
differences, like in figure 5.1, are difficult to spot.
Figure 5.3 shows the amount of used bytes in blue and the available amount in red above it,
which together make up the total size of this storage device. In theory at least. In practice, this
can vary a substantial amount, especially in Ceph, resulting in a "bumpy" graph that is harder
to read.

Figure 5.1.: Lustre Overview

Because the Lustre system is so large and split into several partitions, I have only shown one
of them here.

While both graphs are not particularly complex, they do offer a good universal baseline. And as
we will see, irregularities at this level often reflect on other areas. Maldistributions here already
give a hint for why more specific problems might arise. For Lustre, in figure 5.1, we can already
see that the last twelve OSTs are less utilized than the others. This could be because they were
recently added and not completely filled yet. Though this is still a rather minor deviation and
not necessarily a major problem.
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Figure 5.2.: Ceph Overview

(a) Lustre

(b) Ceph

Figure 5.3.: Stacked bar chart overview

Similar observations can be made in figure 5.2 with Ceph, where some of the smaller OSDs
are quite a bit more crowded than the rest, although this general view is not very helpful for
finding potential causes.
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It is also noteworthy that there is a difference in the level of detail between Lustre and Ceph.
While Lustre does not provide significantly more overview information than this, Ceph, on
the other hand, offers a wealth of information that can be visualized, principally the pools and
placement groups, as well as the storage device hierarchy/physical location.
This is mainly due to the information available to me for each system: I got the Lustre storage
layout via user APIs, while the Ceph information comes from an administrator.

Ceph specific overview: To analyze the Ceph storage layout in more detail, I built an
interactive Dash application that includes placement group and pool data, as outlined in
sections 3.2.3 and 3.2.4 . The initial view can be seen in figure 5.4: most prominent is a tree
map at the top displaying the OSD topology and class of each storage device. In this case, a
SSD is colored orange, a NVMe purple, and a bucket green. At the bottom left is the OSD bar
chart from figure 5.2, in the middle a scatter plot for the placement groups, and to the right is
another bar chart for the pool data.

Figure 5.4.: Initial Dashboard showing the relationship between OSDs, PGs and pools

When a bar in the OSD bar chart is clicked, it is colored yellow in the tree map, and all its
heartbeat peers that it is connected with are colored in blue, shown in figure 5.5
It must be done in this roundabout way via the bar chart since, as mentioned in section 3.2.4,
the tree map already has intrinsic interactivity. Adding a click event that would allow users to
directly select an OSD in the tree map to see its peers would lead to rendering errors. Another
possible solution I tried was to use a hover event for the tree map, but this would not work for
any OSD in the center of the graph, as the hover callback would fire on the first OSD touched
by the mouse.

When a PG in the scatter plot is clicked, it shows the primary and secondary OSDs it is stored
on and replicated on in the tree map, as shown in figure 5.6. This allows for a quick check to
make sure that a PG was indeed stored as intended and is spread out enough.
A problem with Plotly can be seen here: the tree map hides some elements in the initial zoomed-
out view, so that certain OSDs are only visible if zoomed in. A second blue OSD is hidden
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Figure 5.5.: OSD tree map with selected OSD

inside the grey bar in the center of the tree map. There is only a limited amount of screen space
available for a graph, and Plotly decides itself which elements it minimizes and which it shows
fully. All three graphs have a drop-down menu. The menus for the two bar charts allow users

Figure 5.6.: Ceph Dash with selected PG

to select which column of the original table they want displayed on the y-axis. The drop-down
menu of the scatter plot changes the color of the PGs. It can either be the pool they belong to
or the "state" of the PG, which can be a combination of 32 states. The normal and optimal one
is "active+clean", while a damaged placement group might be "degraded" or "inconsistent" and
one currently being checked for problems could be "active+clean+scrubbing+clean".

5.2.2. Individual File Distribution

An important aspect is the distribution of a single file that a user might be interested in. It
is also the building block of other, more complex visualizations that show the distribution of
multiple files and their relationships.
Figure 5.8 shows the visualization of the typical layout of a file in the "/pool/data" partition
of Levante. While this most basic use-case is in and of itself rather uneventful, it is a very
common layout. Most small files do not need to be striped across a plethora of devices and
are instead most efficiently stored in this simple form. That makes it a useful and frequent
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Figure 5.7.: Ceph Dash with various y-axis changes

Figure 5.8.: In the most rudimentary case, a file is simple stored on a single OST

use-case. In these simple cases, a visualization is not always needed, as it might be easy enough
to understand from just text. Getting, parsing, and visualizing is work that takes time and is
not always in proportion to the insight gained.

A lot more interesting are the two PFL examples in figure 5.9, that both consist of three
components but have very different effects. In figure 5.9a the first gigabyte is striped across
a single device, enough for small files and necessitating only a small overhead. The next 3
gigabytes are striped across 4 different OSTs, until the rest of the file is striped across 16 devices,
which is more than enough for most typical files. This ensures that even if the file grows
significantly larger, it will still be balanced and spread relatively evenly across many devices.
The opposite is a layout in figure 5.9b that starts by striping data across four devices, then
three, and finally just two devices. The larger the file grows, the more the imbalance grows as
well, resulting in much slower access than would be possible. The visualization can help in
showing the results of mistakes like these that might be overlooked in text form.

These were examples from Lustre. Ceph, on the other hand, is object-based, and showing the
location of a file, or even an entire directory, would be rather difficult. Especially as I personally
did not have access to the system and many users might neither. Though, at least in theory,
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(a) A very efficient PFL (b) A sub-optimal PFL

Figure 5.9.: Two exemplary progressive file layouts

this procedure is possible, if not entirely quick, efficient, or easy.
All objects in a pool can be listed with the Rados command "rados -p <pool-name> ls", and
every object belonging to a desired file would need to be identified. For each object, the ceph
command "ceph osd map <pool-name> <object-name>" would need to be sent. The outputs
from these commands would need to be parsed for the PG this object is placed in and the OSDs
it is stored and replicated on. All of these would have to be gathered and could then be shown
in a similar manner to the one I implemented in Lustre.

5.2.3. Multiple File Distribution

Visualizing the file layout of several files is relatively simple. Similar graphs to figure 5.9 are
layered on top of each other, though with each file having a different color, instead of each
layout component. This is to reduce the complexity of the graph and keep it readable. In this
use-case the focus also lies on the location of a collection of files, and less on each individual
file layout.
A relatively small example can be seen in figure 5.10. I created several files with varying sizes
and layouts, that are stored across the four OSTs of the HOME partition. The inefficient layout
from figure 5.9b can be seen in purple and seems relatively good when compared to the light
green file "test_1453" that lies entirely on OST 1. Due to this, OST 1 is overloaded, while OST 2
remains nearly untouched.

This visualization is only easily readable for a small number of files. Beyond that, the sheer
volume of files and colors becomes overwhelming, and other visualization approaches might
be better, like showing the entire directory.
One such case can be seen in Figure 5.11: The hundreds of file layouts are simply too many
and make it nearly impossible to decipher the actual distribution of any one file. Which is
unfortunate, as there is quite an interesting problem to be seen here: The graph mostly consists
of large bars of 1 gigabyte size, but between them are numerous smaller stripes of just a few
megabytes, so small that they can not be colored and appear grey.
The reason for this can be seen when one looks at the file sizes: They are all around 1.2
gigabytes. The progressive file layout stripes the first 1 gigabyte across a single OST, and the
next 3 gigabytes across four OSTs. This is a good progressive file layout for larger files that
are several gigabytes big, where there is actually a significant amount of data to divide across
four OSTs. However, in this specific situation, the rest is so small that there is basically no
speed benefit from utilizing these four OSTs, it just creates a larger overhead cost for Lustre.
Changing the standard PFL to only start utilizing more OSTs after perhaps 2 gigabytes could
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Figure 5.10.: The file distribution of to many files

help immensely.
Additionally, the hundreds of files are stored randomly across 158 OSTs, which leads to a
somewhat even distribution. Some storage devices like OST 2 are nevertheless significantly
more crowded than others, while some, especially OST 77, remain nearly empty. Such imbalance
is to be expected from a random selection and is still within an acceptable range.

Figure 5.11.: The file distribution of 970 files

5.2.4. Multiple File Overlap

The aforementioned visualization works well when the distribution of files is of particular
interest. But many applications may read and write from and to several files, so avoiding
conflicts between two groups of files might be advantageous. For that, a heat map is very
helpful, an example of which can be seen in figure 5.12. It shows the overlap between two
groups of files on each OST, utilizing a thermal scale. As we can see, in this hypothetical
scenario, hot spots like OST 2, 18, 20, and 110 might experience conflicts and congestion, while
other OSTs like 6 or 31 are underutilized.
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Figure 5.12.: Heat map of the overlap between two groups of files

A slight difficulty I encountered with heat maps in Plotly is the need for a mostly square shape
to show every element at once in a compact form. If given just a list of values, Plotly also only
shows a very long, one-dimensional heat map which makes comparing and spotting values
rather difficult. But for a square heat map, a square matrix of all the values is needed. Should
the number of elements not have an integer square root, dummy elements are needed to fill the
square matrix, shown with "n/a" in the heat map. This is not a huge problem, but it might give
the impression on first glance that there are some OSTs in the top row that are underutilized.

5.2.5. Directory Structure

Finally, the last use-case I looked at was the the analysis of an entire directory and all files in it
and its subfolders. To tackle this problem, I built the Dash application seen in figure 5.13 and
5.14. It shows the fill level of each OST as a bar chart, with the color denoting the number of
files from the analyzed directory that are stored on that particular OST. Below this bar chart
are three more graphs that show different statistics of the directory files, as described in section
3.2.4.
As an example, I analyzed the directory "/pool/data", which contains over half a million files.
Most striking is the nearly perfect distribution across most OSTs, except for the last twelve,
which remain nearly untouched by the directory. These are also the OSTs that are slightly less
filled, which was already visible in figure 5.1 and 5.3a.
For an initial search of potential causes, the Dash application shows the gathered file statistics
in three graphs. These show, that most files were last modified in March 2018, though some
date back over two decades. Nearly all of them were created by a single user and are rather
small.

While these statistics are for all the files, it is possible to select only the outliers in the top bar
chart, as seen in figure 5.14, which limits the statistic graphs to only files from those selected
OSTs. While most of these files are still relatively small and most belong to the same user as
before, a far greater part of them were created by a different user. Most striking is perhaps the
time component, which shows most files on the underutilized OSTs to be very young. Nearly
all of them are from a single date in 2023, with nearly every other file from various days in
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Figure 5.13.: Inintial Lustre Dashboard
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Figure 5.14.: Selection of the last twelve OSTs
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2022. This is in stark contrast to the rest of the files, which tend to be much older and spread
across a far wider time frame.

Thus, a possible cause might be that the last twelve OSTs were a recent addition to the cluster
and older files were not (yet) moved to them. New files, on the other hand, are placed mostly
randomly across all available OSTs by Lustre and are slowly starting to populate them.
To prove this hypotheses, more information about the storage devices might be helpful, like
when they were added to the cluster. Such information is most likely only accessible to the
administrator of the cluster. Another hint would be the statistics of every other file on these
twelve OSTs to see if they were also recently added. This would require gathering the file
layout and statistics of each and every file in the entire system, which would undoubtedly
overwhelm it.

Summary

In this chapter we have seen a broad selection of visualizations for various use cases: First a very
basic overview of the storage device utilization that works for most distributed systems. System
specific additions, like a cluster map, pool and placement group information for Ceph are necessary
for a truly fruitful analysis. Secondly single file visualizations work quite well in Lustre and
successfully reveal maldistributions. These can be extended to cover the layout of multiple files
and even to compare the overlap between two groups of files. Ceph, unfortunately, is much more
restrictive with its access. Finally, for large amounts of files a separate directory visualization can
be helpful for finding issues and providing first hints for potential causes.
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Chapter 6.

Conclusion and Future Work

6.1. Conclusion

Overall, this thesis was successful in creating interactive visualizations for the storage layout
of distributed systems. I was able to develop nearly universal visualizations that work beyond
just a single system, though by themselves they are quite limited and need to be joined by more
system-specific graphs for any deeper analysis. Specialized charts about Lustre file striping
were surprisingly successful and could showcase very interesting cases of unbalanced storage
distributions.
Unfortunately, I could not work with Ceph directly, which mostly excluded me from the file
and object side of it. However, even the more easily available PG, OSD and pool data were quite
intricate and interconnected, which lend themselves well to an interactive visualization.

Especially when working on these interactive relationships, I noticed the limitations of the
visualization libraries I chose, Plotly and Dash, and was more often than not working against
them, instead of with them. Simpler interactive behaviour, like the OST-selection for the Lustre
directory visualization, was relatively easy once I understood the concepts behind Dash. But
when I attempted a more omnidirectional interactivity for Ceph, where the same graph modifies
other graphs but can also itself be modified, it became quite complicated and prone to bugs.
Nevertheless, these libraries did offer me an unprecedented level of comfort in quickly creating
various graphs with many useful features, like hover tool tips or color bars. These would other-
wise have been much more time-consuming or impossible to create with other visualization
libraries.

6.2. Future Works

6.2.1. Utilize more available information

The first potential avenue for future works is to utilize more aspects that Lustre and especially
Ceph have to offer: While I have utilized most commands that Lustre offers about the storage
layout, there are many parts of these commands that I did not utilize, be it for time constraints,
lack of knowledge, deviation from the topic of storage layout, or incorrect assumptions about
the usefulness of certain information. Through this, it might be possible to delve deeper into
the physical storage layout and the actual location of files and stripes on a storage device, as
this can influence how fast I/O operations are done.
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This is even more so the case for Ceph, where I did not have first-hand access to the outputs
and used just a small part of all the data that were available to me. A huge part of Ceph that I
omitted are the placement rules that define how and where a file is placed and replicated. They
are very simple to access, but I could not find a satisfactory solution on how best to integrate
them with the overall storage layout in a way that could really benefit users. There is also a
plethora of placement group information available through the command pg dump that seemed
unimportant or simply not understandable. While the documentation for Ceph commands is
quite thorough, there is very little information about their outputs, much of which one has to
guess or cobble together.

6.2.2. Physical Layout

While I focused more on a high-level overview and the overall distribution of files, an equally
interesting aspect is the hardware side and the actual physical layout on the disks. Such
information is more difficult to come by and not necessarily available to the average user, but
it is nevertheless crucial for optimal storage. The fragmentation of a disk or the position of its
read-and-write head for each fragment can matter a lot as well

6.2.3. Increase Usability

Increasing the usability of the tools could be another path, not only to increase the efficiency
with which an administrator might use them, but also to give more casual users of distributed
systems the tools to make the most out of their supercomputer. Not every climate scientist
working at the DKRZ might want to or have the time to learn the intricacies of Lustre. Still,
how they choose to store files has a direct effect on the speed of their simulations, whether they
know it or not. Good default settings are invaluable and give serviceable results in most cases,
though by their very design they leave a lot of room for optimization in specific situations.
Giving each user an accessible way of optimizing their work could help the entire system utilize
its resources as much as possible.

6.2.4. Changes over time

An interesting direction for future research would involve incorporating a time component. This
could mean illustrating how storage use changes over time, how specific files grow and move,
to identify potential bottlenecks and hot spots. Such an approach might help in planning for
future system expansions and overhauls, determining which parts should be prioritized to keep
up with increasing requirements. Some key considerations might be the rate at which storage
devices fill up, typical user behaviour, and the life cycle of a file. These might be particularly
interesting for improving the PFL in Lustre, as it is specifically designed to accommodate
changes in a file’s size.
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